Functions of operators and the classes associated with them
Doctoral Thesis
1988
Permanent link to this Item
Authors
Journal Title
Link to Journal
Journal ISSN
Volume Title
Publisher
Publisher
University of Cape Town
Faculty
License
Series
Abstract
The important classes of normally solvable, ϴ₊ (ϴ₋) and strictly singular (strictly cosingular) operators have long been studied in the setting of bounded or closed operators between Banach spaces. Results by Kato, Lacey, et al (see Goldberg [16; III.1.9, III.2.1 and III.2.3] ) led to the definition of certain norm related functions of operators (Γ, Δ and Γ₀) which provided a powerful new way to study the classes of ϴ₊ and strictly singular operators (see for example Gramsch[19], Lebow and Schechter[28] and Schechter[36]). Results by Brace and R.-Kneece[4] among others led to the definition of analogous functions (Γ' and Δ') which were used to study ϴ₋ and strictly cosingular operators (see for example Weis, [37] and [38]). Again this problem was considered mainly for the case of bounded operators between Banach spaces. This thesis represents a contribution to knowledge in the sense that by considering the functions Γ', Δ' and Γ'₀, as well as the minimum modulus function in the more general setting of unbounded linear operators between normed linear spaces, we obtain the classes of F₋ and Range Open operators which turn out to be closely related to the classes of ϴ₋ and normally solvable operators respectively. We also define unbounded strictly cosingular operators and find that many of the classical results on ϴ₋, normally solvable and bounded strictly cosingular operators go through for F₋, range open and unbounded strictly cosingular operators respectively. This ties up with work done by R. W. Cross and provides a workable framework within which to study ϴ₋ and ϴ₊ type operators in the much more. general setting of unbounded linear operators between normed linear spaces.
Description
Reference:
Labuschagne, L., Labuschagne, L. 1988. Functions of operators and the classes associated with them. University of Cape Town.