A study of integrability conditions for irrotational dust spacetimes
Doctoral Thesis
1998
Permanent link to this Item
Authors
Supervisors
Journal Title
Link to Journal
Journal ISSN
Volume Title
Publisher
Publisher
University of Cape Town
Faculty
License
Series
Abstract
This thesis examines consistency conditions for fluid solutions of the field equations of general relativity. The exact non-linear dynamic equations for a generic irrotational dust spacetime are consistent. To analyse conditions characterizing pure gravity waves, linearization instability in general relativity and consistency of the so-called "silent universes", further exact conditions are imposed locally on irrotational dust. These are classified into Class II conditions, which change evolution equations into constraint equations, and Class I and III conditions, which do not doso-rather they add a new constraint, leaving the propagation equations unchanged in form. Class I conditions are imposed on terms in the constraint equations, while Class II and III conditions are imposed on terms in the evolution equations. In the Class I case it is shown that for irrotational dust space times the divergence-free magnetic Weyl tensor and the divergence-free electric Weyl tensor (necessary conditions for gravity waves interacting with matter), both imply integrability conditions in the exact non-linear case. The integrability conditions for the divergence-free magnetic Weyl tensor are identically satisfied in the linearized perturbation case, but are non-trivial in the exact non-linear case. This leads to a linearization instability in these models. The integrability conditions for the divergence-free electric Weyltensor are non-trivial in both the linear and non-linear cases. The Class II case focuses on irrotational silent cosmological dust models characterized by vanishing magnetic Weyl tensor and vanishing electric Weyl tensor. In both these models there exist a series of integrability conditions that need to be satisfied. Integrability conditions for the zero magnetic Weyl tensor condition hold identically for linearized case, but are non-trivial in the exact non-linear case. Thus there is also a linearization instability. The zero electric Weyl tensor condition leads to a chain of non-trivial integrability conditions in both the linear and non-linear cases. Because of the complexity of the integrability conditions, it is highly unlikely that there is a large class of models in both the silent zero magnetic Weyl tensor case and the silent zero electric Weyl tensor case.
Description
Bibliography: pages 139-145.
Reference:
Lesame, W. 1998. A study of integrability conditions for irrotational dust spacetimes. University of Cape Town.