Negotiating disciplinary boundaries in engineering problem-solving practice
Doctoral Thesis
2015
Permanent link to this Item
Authors
Journal Title
Link to Journal
Journal ISSN
Volume Title
Publisher
Publisher
University of Cape Town
Department
Faculty
License
Series
Abstract
The impetus for this research is the well-documented current inability of Higher Education to facilitate the level of problem solving required in 21st century engineering practice. The research contends that there is insufficient understanding of the nature of and relationship between the significantly different forms of disciplinary knowledge underpinning engineering practice. Situated in the Sociology of Education, and drawing on the social realist concepts of knowledge structures (Bernstein, 2000) and epistemic relations (Maton, 2014), the research maps the topology of engineering problem-solving practice in order to illuminate how novice problem solvers engage in epistemic code shifting in different industrial contexts. The aim in mapping problem-solving practices from an epistemological perspective is to make an empirical contribution to rethinking the theory/practice relationship in multidisciplinary engineering curricula and pedagogy, particularly at the level of technician. A novel and pragmatic problem-solving model - integrated from a range of disciplines - forms the organising framework for a methodologically pluralist case-study approach. The research design draws on a metaphor from the empirical site (modular automation systems) and sees the analysis of twelve matched cases in three categories. Case-study data consist of questionnaire texts, re-enactment interviews, expert verification interviews, and industry literature. The problem-solving model components (problem solver, problem environment, problem structure and problem-solving process) were analysed using, primarily, the Legitimation Code Theory concept of epistemic relations. This is a Cartesian plane-based instrument describing the nature of and relations between a phenomenon (what) and ways of approaching the phenomenon (how). Data analyses are presented as graphical relational maps of different practitioner knowledge practices in different contexts across three problem solving stages: approach, analysis and synthesis. Key findings demonstrate a symbiotic, structuring relationship between the 'what' and the 'how' of the problem in relation to the problem-solving components. Successful problem solving relies on the recognition of these relationships and the realisation of appropriate practice code conventions, as held to be legitimate both epistemologically and contextually. Successful practitioners engage in explicit code-shifting, generally drawing on a priori physics and mathematics-based knowledge, while acquiring a posteriori context-specific logic-based knowledge. High-achieving practitioners across these disciplinary domains demonstrate iterative code-shifting practices and discursive sensitivity. Recommendations for engineering education include the valuing of disciplinary differences and the acknowledgement of contextual complexity. It is suggested that the nature of engineering mathematics as currently taught and the role of mathematical thinking in enabling successful engineering problem-solving practice be investigated.
Description
Includes bibliographical references
Keywords
Reference:
Wolff, K. 2015. Negotiating disciplinary boundaries in engineering problem-solving practice. University of Cape Town.