Detection of faults in a scaled down doubly-fed induction generator using advanced signal processing techniques.

dc.contributor.advisorBarendse, Paul
dc.contributor.authorHamatwi, Ester
dc.date.accessioned2023-07-03T09:43:02Z
dc.date.available2023-07-03T09:43:02Z
dc.date.issued2023
dc.date.updated2023-07-03T09:41:23Z
dc.description.abstractThe study ventures into the development of a micro-based doubly fed induction generator (DFIG) test rig for fault studies. The 5kW wound rotor induction machine (WRIM) that was used in the test rig was based on a scaled-down version of a 2.5MW doubly fed induction generator (DFIG). The micromachine has been customized to make provision for implementing stator inter-turn short-circuit faults (ITSCF), rotor ITSCF and static eccentricity (SE) faults in the laboratory environment. The micromachine has been assessed under the healthy and faulty states, both before and after incorporating a converter into the rotor circuit of the machine. In each scenario, the fault signatures have been characterised by analyzing the stator current, rotor current, and the DFIG controller signals using the motor current signature analysis (MCSA) and discrete wavelet transform (DWT) analysis techniques to detect the dominant frequency components which are indicative of these faults. The purpose of the study is to evaluate and identify the most suitable combination of signals and techniques for the detection of each fault under steady-state and transient operating conditions. The analyses of the results presented in this study have indicated that characterizing the fault indicators independent of the converter system ensured clarity in the fault diagnosis process and enabled the development of a systematic fault diagnosis approach that can be applied to a controlled DFIG. It has been demonstrated that the occurrence of the ITSCFs and the SE fault in the micro-WRIM intensifies specific frequency components in the spectral plots of the stator current, rotor current, and the DFIG controller signals, which may then serve as the dominant fault indicators. These dominant components may be used as fault markers for classification and have been used for pattern recognition under the transient condition. In this case, the DWT and spectrogram plots effectively illustrated characteristic patterns of the dominant fault indicators, which were observed to evolve uniquely and more distinguishable in the rotor current signal compared to the stator current signal, before incorporating the converter in the rotor circuit. Therefore, by observing the trends portrayed in the decomposition bands and the spectrogram plots, it is deemed a reliable method of diagnosing and possibly quantifying the intensity of the faults in the machine. Once the power electronic converter was incorporated into the rotor circuit, the DFIG controller signals have been observed to be best suited for diagnosing faults in the micro-DFIG under the steady-state operating condition, as opposed to using the terminal stator or rotor current signals. The study also assessed the impact of undervoltage conditions at the point of common coupling (PCC) on the behaviour of the micro-DFIG. In this investigation, a significant rise in the faulted currents was observed for the undervoltage condition in comparison to the faulty cases under the rated grid voltage conditions. In this regard, it could be detrimental to the operation of the micro-DFIG, particularly the faulted phase windings, and the power electronic converter, should the currents exceed the rated values for extended periods.
dc.identifier.apacitationHamatwi, E. (2023). <i>Detection of faults in a scaled down doubly-fed induction generator using advanced signal processing techniques</i>. (). ,Faculty of Engineering and the Built Environment ,Department of Electrical Engineering. Retrieved from http://hdl.handle.net/11427/38009en_ZA
dc.identifier.chicagocitationHamatwi, Ester. <i>"Detection of faults in a scaled down doubly-fed induction generator using advanced signal processing techniques."</i> ., ,Faculty of Engineering and the Built Environment ,Department of Electrical Engineering, 2023. http://hdl.handle.net/11427/38009en_ZA
dc.identifier.citationHamatwi, E. 2023. Detection of faults in a scaled down doubly-fed induction generator using advanced signal processing techniques. . ,Faculty of Engineering and the Built Environment ,Department of Electrical Engineering. http://hdl.handle.net/11427/38009en_ZA
dc.identifier.ris TY - Doctoral Thesis AU - Hamatwi, Ester AB - The study ventures into the development of a micro-based doubly fed induction generator (DFIG) test rig for fault studies. The 5kW wound rotor induction machine (WRIM) that was used in the test rig was based on a scaled-down version of a 2.5MW doubly fed induction generator (DFIG). The micromachine has been customized to make provision for implementing stator inter-turn short-circuit faults (ITSCF), rotor ITSCF and static eccentricity (SE) faults in the laboratory environment. The micromachine has been assessed under the healthy and faulty states, both before and after incorporating a converter into the rotor circuit of the machine. In each scenario, the fault signatures have been characterised by analyzing the stator current, rotor current, and the DFIG controller signals using the motor current signature analysis (MCSA) and discrete wavelet transform (DWT) analysis techniques to detect the dominant frequency components which are indicative of these faults. The purpose of the study is to evaluate and identify the most suitable combination of signals and techniques for the detection of each fault under steady-state and transient operating conditions. The analyses of the results presented in this study have indicated that characterizing the fault indicators independent of the converter system ensured clarity in the fault diagnosis process and enabled the development of a systematic fault diagnosis approach that can be applied to a controlled DFIG. It has been demonstrated that the occurrence of the ITSCFs and the SE fault in the micro-WRIM intensifies specific frequency components in the spectral plots of the stator current, rotor current, and the DFIG controller signals, which may then serve as the dominant fault indicators. These dominant components may be used as fault markers for classification and have been used for pattern recognition under the transient condition. In this case, the DWT and spectrogram plots effectively illustrated characteristic patterns of the dominant fault indicators, which were observed to evolve uniquely and more distinguishable in the rotor current signal compared to the stator current signal, before incorporating the converter in the rotor circuit. Therefore, by observing the trends portrayed in the decomposition bands and the spectrogram plots, it is deemed a reliable method of diagnosing and possibly quantifying the intensity of the faults in the machine. Once the power electronic converter was incorporated into the rotor circuit, the DFIG controller signals have been observed to be best suited for diagnosing faults in the micro-DFIG under the steady-state operating condition, as opposed to using the terminal stator or rotor current signals. The study also assessed the impact of undervoltage conditions at the point of common coupling (PCC) on the behaviour of the micro-DFIG. In this investigation, a significant rise in the faulted currents was observed for the undervoltage condition in comparison to the faulty cases under the rated grid voltage conditions. In this regard, it could be detrimental to the operation of the micro-DFIG, particularly the faulted phase windings, and the power electronic converter, should the currents exceed the rated values for extended periods. DA - 2023_ DB - OpenUCT DP - University of Cape Town KW - Electrical Engineering LK - https://open.uct.ac.za PY - 2023 T1 - Detection of faults in a scaled down doubly-fed induction generator using advanced signal processing techniques TI - Detection of faults in a scaled down doubly-fed induction generator using advanced signal processing techniques UR - http://hdl.handle.net/11427/38009 ER - en_ZA
dc.identifier.urihttp://hdl.handle.net/11427/38009
dc.identifier.vancouvercitationHamatwi E. Detection of faults in a scaled down doubly-fed induction generator using advanced signal processing techniques. []. ,Faculty of Engineering and the Built Environment ,Department of Electrical Engineering, 2023 [cited yyyy month dd]. Available from: http://hdl.handle.net/11427/38009en_ZA
dc.language.rfc3066eng
dc.publisher.departmentDepartment of Electrical Engineering
dc.publisher.facultyFaculty of Engineering and the Built Environment
dc.subjectElectrical Engineering
dc.titleDetection of faults in a scaled down doubly-fed induction generator using advanced signal processing techniques.
dc.typeDoctoral Thesis
dc.type.qualificationlevelDoctoral
dc.type.qualificationlevelPhD
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
thesis_ebe_2023_hamatwi ester.pdf
Size:
24.25 MB
Format:
Adobe Portable Document Format
Description:
License bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
0 B
Format:
Item-specific license agreed upon to submission
Description:
Collections