Statistical models to describe nuclear matter at high temperatures and densities

Doctoral Thesis

2011

Permanent link to this Item
Authors
Supervisors
Journal Title
Link to Journal
Journal ISSN
Volume Title
Publisher
Publisher

University of Cape Town

License
Series
Abstract
In order to understand nuclear matter at high temperatures and densities formed in heavy ion collisions, it is useful to use statistical-thermal models to analyse the final state. We apply different types of statistical distributions and discuss their effects. We discuss the hadron resonance gas model and its extension to include the Hagedorn spectrum [1, 2, 3]. The Hagedorn temperature, TH is determined from the number of hadronic resonances including all mesons and baryons. This leads to the result TH = 174±1l MeV consistent with the critical and the chemical freeze-out temperatures at zero chemical potential. We apply this result to calculate the speed of sound and other thermodynamic quantities in the resonance hadron gas model for a wide range of baryon chemical potentials using the chemical freeze-out curve [4, 5]. We compare some of our results to those obtained previously [6, 7]. We have also made additions to THERMUS [8] by including charm and bottom hadrons from the particle data table . Then, we analyze and discussthe hadronic abundances measured in proton-proton (p-p), gold-gold (Au-Au) and lead-lead (Pb-Pb) collisions at Relativistic Heavy-Ion Collider (RHIC) [10] and Large Hadron Collider (LHC) [11, 12, 13] experiments using THERMUS. The THERMUS results obtained with the 2002 particle data table and new particle data table (2008 particle data table) and their differences are discussed. In particular, the data from the RHIC experiment for Au-Au collisions at 130 GeV and 200 GeV [10] are discussed and analyzed. Similarly, using the preliminary particle yield results of p-p collisions at 0.9 TeV and 7 TeV as well as Pb-Pb collision at 2.76 TeV [11, 12, 13l are presented and the thermodynamic parameters are obtained from the fit are discussed.
Description

Includes abstract.


Includes bibliographical references.

Keywords

Reference:

Collections