Characterization of an alkalophilic Bacillus brevis isolate with respect to its endo-(1,3-1,4)-β-glucanase gene, protein hyperproduction and the degS-degU operon

dc.contributor.advisorReid, Sharon Jen_ZA
dc.contributor.authorLouw, Maureen Elizabethen_ZA
dc.date.accessioned2016-09-06T14:44:30Z
dc.date.available2016-09-06T14:44:30Z
dc.date.issued1994en_ZA
dc.descriptionBibliography: pages 127-144.en_ZA
dc.description.abstractBacillus brevis Alk 36 was isolated from soil during a screening programme for the selection of extracellular enzyme producing strains. A gene coding for an endo(1,3- 1,4 )-.8-glucanase (or lichenase) was cloned from B. brevis Alk 36 and expressed in Escherichia coli. The nucleotide sequence of this gene was determined and found to encode a protein of 252 amino acid residues. The amino acid sequence of the B. brevis lichenase gene showed only a 50% similarity to previously published data for Bacillus endo-(1,3-1,4)-β-glucanases. The enzyme exhibited some unique properties. The optimum temperature and pH for enzyme activity were 65-70°C and 8-10, respectively. When held at 75°C for 1 h, 75% residual activity was measured. The molecular mass was estimated to be 29 kDa and the enzyme was found to be resistant to sodium dodecyl sulphate (SDS). B. brevis Alk 36 was evaluated as a potential host strain for the efficient production and secretion of foreign proteins and was found to grow optimally between pH 8.0 and pH 9.5 and between 42°C and 52°C. B. brevis was successfully transformed using vector DNA and was found to produce relatively low levels of protease. In addition, it was evaluated as a possible protein hyper-secreting strain. However, using PCR technology, the highly conserved cell wall protein genes could not be positively identified in B. brevis Alk 36.en_ZA
dc.identifier.apacitationLouw, M. E. (1994). <i>Characterization of an alkalophilic Bacillus brevis isolate with respect to its endo-(1,3-1,4)-β-glucanase gene, protein hyperproduction and the degS-degU operon</i>. (Thesis). University of Cape Town ,Faculty of Science ,Department of Molecular and Cell Biology. Retrieved from http://hdl.handle.net/11427/21696en_ZA
dc.identifier.chicagocitationLouw, Maureen Elizabeth. <i>"Characterization of an alkalophilic Bacillus brevis isolate with respect to its endo-(1,3-1,4)-β-glucanase gene, protein hyperproduction and the degS-degU operon."</i> Thesis., University of Cape Town ,Faculty of Science ,Department of Molecular and Cell Biology, 1994. http://hdl.handle.net/11427/21696en_ZA
dc.identifier.citationLouw, M. 1994. Characterization of an alkalophilic Bacillus brevis isolate with respect to its endo-(1,3-1,4)-β-glucanase gene, protein hyperproduction and the degS-degU operon. University of Cape Town.en_ZA
dc.identifier.ris TY - Thesis / Dissertation AU - Louw, Maureen Elizabeth AB - Bacillus brevis Alk 36 was isolated from soil during a screening programme for the selection of extracellular enzyme producing strains. A gene coding for an endo(1,3- 1,4 )-.8-glucanase (or lichenase) was cloned from B. brevis Alk 36 and expressed in Escherichia coli. The nucleotide sequence of this gene was determined and found to encode a protein of 252 amino acid residues. The amino acid sequence of the B. brevis lichenase gene showed only a 50% similarity to previously published data for Bacillus endo-(1,3-1,4)-β-glucanases. The enzyme exhibited some unique properties. The optimum temperature and pH for enzyme activity were 65-70°C and 8-10, respectively. When held at 75°C for 1 h, 75% residual activity was measured. The molecular mass was estimated to be 29 kDa and the enzyme was found to be resistant to sodium dodecyl sulphate (SDS). B. brevis Alk 36 was evaluated as a potential host strain for the efficient production and secretion of foreign proteins and was found to grow optimally between pH 8.0 and pH 9.5 and between 42°C and 52°C. B. brevis was successfully transformed using vector DNA and was found to produce relatively low levels of protease. In addition, it was evaluated as a possible protein hyper-secreting strain. However, using PCR technology, the highly conserved cell wall protein genes could not be positively identified in B. brevis Alk 36. DA - 1994 DB - OpenUCT DP - University of Cape Town LK - https://open.uct.ac.za PB - University of Cape Town PY - 1994 T1 - Characterization of an alkalophilic Bacillus brevis isolate with respect to its endo-(1,3-1,4)-β-glucanase gene, protein hyperproduction and the degS-degU operon TI - Characterization of an alkalophilic Bacillus brevis isolate with respect to its endo-(1,3-1,4)-β-glucanase gene, protein hyperproduction and the degS-degU operon UR - http://hdl.handle.net/11427/21696 ER - en_ZA
dc.identifier.urihttp://hdl.handle.net/11427/21696
dc.identifier.vancouvercitationLouw ME. Characterization of an alkalophilic Bacillus brevis isolate with respect to its endo-(1,3-1,4)-β-glucanase gene, protein hyperproduction and the degS-degU operon. [Thesis]. University of Cape Town ,Faculty of Science ,Department of Molecular and Cell Biology, 1994 [cited yyyy month dd]. Available from: http://hdl.handle.net/11427/21696en_ZA
dc.language.isoengen_ZA
dc.publisher.departmentDepartment of Molecular and Cell Biologyen_ZA
dc.publisher.facultyFaculty of Scienceen_ZA
dc.publisher.institutionUniversity of Cape Town
dc.subject.otherMolecular and Cell Biologyen_ZA
dc.titleCharacterization of an alkalophilic Bacillus brevis isolate with respect to its endo-(1,3-1,4)-β-glucanase gene, protein hyperproduction and the degS-degU operonen_ZA
dc.typeDoctoral Thesis
dc.type.qualificationlevelDoctoral
dc.type.qualificationnamePhDen_ZA
uct.type.filetypeText
uct.type.filetypeImage
uct.type.publicationResearchen_ZA
uct.type.resourceThesisen_ZA
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
thesis_sci_1994_louw_maureen_elizabeth..pdf
Size:
2.76 MB
Format:
Adobe Portable Document Format
Description:
Collections