Investigation of the role of the extracellular β-agarase, produced by the bacterial epiphyte Pseudoalteromonas sp. LS2i, in the virulence response towards the agarophyte Gracilaria gracilis

Doctoral Thesis


Permanent link to this Item
Journal Title
Link to Journal
Journal ISSN
Volume Title

University of Cape Town

Gracilaria gracilis that grows naturally at Saldanha Bay, South Africa is economically important as a source of agar. The Gracilaria yields from natural beds at Saldanha Bay are however unreliable, and consequently the South African Gracilaria industry has experienced a number of setbacks over the years. The only way a consistent supply can be assured is by mariculture to supplement the natural harvests. In 1993 the Seaweed Research Institute (SRU) found that mariculture of G. gracilis in Saldanha Bay is feasible but that there is potential to improve yields by technical research and development (Anderson et al.1996a). Jaffray and Coyne (1996) developed a pathogenicity assay that demonstrated that agarolytic bacteria isolated from Saldanha Bay Gracilaria induced disease symptoms such as thallus bleaching, while non-agarolytic isolates did not. It is thought that unfavorable environmental conditions such as elevated water temperature and nutrient depletion, which occur during the summer months in the surface layers of the water column in Saldanha Bay, induce the onset of agarase production or result in changes in the bacterial community structure in which agarase-producers become more dominant. By using the pathogenicity assay, Jaffray and Coyne (1996) identified the highly agarolytic Gracilaria gracilis pathogen, Pseudoalteromonas sp. LS2i. The aim of this study was to characterize the bacterial pathogen, Pseudoalteromonas sp. LS2i to further our understanding of virulence regulation and specifically, the role of the agarase enzymes in the process of seaweed-pathogen interaction. Two agarolytic clones, pEB1 and pJB1, were obtained after constructing and screening a Pseudoalteromonas sp. LS2i genomic library in Esherichia coli. Restriction enzyme mapping suggested that both clones contain the same agarase gene. Southern hybridization studies confirmed the origin of the cloned DNA and sequencing studies revealed the 1062 bp ORF, putative promoter region, putative ribosome binding site and putative transcriptional start point of the cloned agarase gene. The ORF showed sequence identity to several other β-agarases and was identified as a member of the GH-16 family of glycoside hydrolases. The agarase was purified from the E. coli JM109 (pEB3) transformant. The molecular weight was estimated to be 39 kDa by SDS-PAGE. Zymogram analysis confirmed that the purified protein is agarolytic and TLC analysis revealed that the predominant end-products of agar hydrolysis are neoagarohexaose and neoagarobiose, which indicates the same mode of action as that observed for the agarase produced extracellularly by Pseudoalteromonas sp. LS2i.

Includes abstract

Includes bibliographical references