Alumina-modified cobalt catalysts for the Fischer-Tropsch synthesis

dc.contributor.advisorVan Steen, Eric
dc.contributor.advisorClaeys, Michael
dc.contributor.authorPetersen, Anna Paula
dc.date.accessioned2019-02-06T13:22:28Z
dc.date.available2019-02-06T13:22:28Z
dc.date.issued2018
dc.date.updated2019-02-06T07:17:24Z
dc.description.abstractIn the Fischer-Tropsch process, valuable hydrocarbons are produced using the basic starting materials hydrogen and carbon monoxide, which can be derived from alternative carbon sources such as coal, gas or biomass [1]. Although this process has been studied for almost a century, the effects of the support material on activity, selectivity and stability of the catalyst remain obscure. This study aims to gain fundamental insights into the effect of metal-support interactions in cobalt alumina based Fischer-Tropsch catalysts. To accomplish this, the effects of metal-support interactions have to be isolated from possible convoluting effects of the metal crystallite size and support porosity. This is achieved by preparing inverse-model catalysts, in which the support is deposited onto the metal, in contrast to conventional supported catalysts, in which the metal phase is deposited onto a porous support [2]. Cobalt alumina inverse-model catalysts were prepared by incipient wetness impregnation of cobalt oxide with aluminium sec-butoxide. The alumina loading was varied systematically between 0 and 2.5 wt% Al. The catalysts were characterised by X-ray diffraction (XRD), Transmission electron microscopy (TEM), H2 -chemisorption, and X-ray absorption near edge spectroscopy (XANES). The catalyst reducibility was studied by temperature programmed reduction (TPR), in situ (XRD) and in situ (XANES) experiments. The catalytic performance for the Fischer-Tropsch synthesis was studied in a slurry reactor under industrially relevant conditions. The alumina modification was found to prevent sintering and decrease the reducibility of the catalysts. With increasing alumina loading, and increasing calcination temperature, reduction peaks shifted to higher temperatures and peaks with maxima above 400 ˝C appeared in the TPR. The kinetic evaluation showed that the decreased reducibility was due to a decrease in the pre-exponential factor, which suggests that the alumina modification hindered hydrogen activation and/or nucleation of reduced cobalt phases. The activity of the catalysts for the FT reaction was found to increase with increasing alumina loading. This was likely an effect of the increase in metal dispersion upon alumina modification. Furthermore, alumina-modified catalysts had a higher C5+ and olefin selectivity, and lower methane selectivity. Pyridine-TPD experiments showed that the alumina modification introduced Lewis acid sites to the cobalt catalysts. Lewis acid sites may interact with adsorbed CO thereby weakening the C-O bond and facilitating CO dissociation. This was supported by CO-TPR experiments, which revealed that alumina-modified catalysts had an increased activity for the surface catalysed Boudouard reaction. It is concluded that the alumina modification increased the rate of CO dissociation on metallic cobalt. An increased rate of CO dissociation may lead to coverage of the metal surface with carbon thereby decreasing hydrogenation and shifting the product selectivity towards high molecular weight products. Hence, alumina may promote the selectivity of cobalt catalysts via a synergistic effect.
dc.identifier.apacitationPetersen, A. P. (2018). <i>Alumina-modified cobalt catalysts for the Fischer-Tropsch synthesis</i>. (). University of Cape Town ,Engineering and the Built Environment ,Department of Chemical Engineering. Retrieved from http://hdl.handle.net/11427/29395en_ZA
dc.identifier.chicagocitationPetersen, Anna Paula. <i>"Alumina-modified cobalt catalysts for the Fischer-Tropsch synthesis."</i> ., University of Cape Town ,Engineering and the Built Environment ,Department of Chemical Engineering, 2018. http://hdl.handle.net/11427/29395en_ZA
dc.identifier.citationPetersen, A. 2018. Alumina-modified cobalt catalysts for the Fischer-Tropsch synthesis. University of Cape Town.en_ZA
dc.identifier.ris TY - Thesis / Dissertation AU - Petersen, Anna Paula AB - In the Fischer-Tropsch process, valuable hydrocarbons are produced using the basic starting materials hydrogen and carbon monoxide, which can be derived from alternative carbon sources such as coal, gas or biomass [1]. Although this process has been studied for almost a century, the effects of the support material on activity, selectivity and stability of the catalyst remain obscure. This study aims to gain fundamental insights into the effect of metal-support interactions in cobalt alumina based Fischer-Tropsch catalysts. To accomplish this, the effects of metal-support interactions have to be isolated from possible convoluting effects of the metal crystallite size and support porosity. This is achieved by preparing inverse-model catalysts, in which the support is deposited onto the metal, in contrast to conventional supported catalysts, in which the metal phase is deposited onto a porous support [2]. Cobalt alumina inverse-model catalysts were prepared by incipient wetness impregnation of cobalt oxide with aluminium sec-butoxide. The alumina loading was varied systematically between 0 and 2.5 wt% Al. The catalysts were characterised by X-ray diffraction (XRD), Transmission electron microscopy (TEM), H2 -chemisorption, and X-ray absorption near edge spectroscopy (XANES). The catalyst reducibility was studied by temperature programmed reduction (TPR), in situ (XRD) and in situ (XANES) experiments. The catalytic performance for the Fischer-Tropsch synthesis was studied in a slurry reactor under industrially relevant conditions. The alumina modification was found to prevent sintering and decrease the reducibility of the catalysts. With increasing alumina loading, and increasing calcination temperature, reduction peaks shifted to higher temperatures and peaks with maxima above 400 ˝C appeared in the TPR. The kinetic evaluation showed that the decreased reducibility was due to a decrease in the pre-exponential factor, which suggests that the alumina modification hindered hydrogen activation and/or nucleation of reduced cobalt phases. The activity of the catalysts for the FT reaction was found to increase with increasing alumina loading. This was likely an effect of the increase in metal dispersion upon alumina modification. Furthermore, alumina-modified catalysts had a higher C5+ and olefin selectivity, and lower methane selectivity. Pyridine-TPD experiments showed that the alumina modification introduced Lewis acid sites to the cobalt catalysts. Lewis acid sites may interact with adsorbed CO thereby weakening the C-O bond and facilitating CO dissociation. This was supported by CO-TPR experiments, which revealed that alumina-modified catalysts had an increased activity for the surface catalysed Boudouard reaction. It is concluded that the alumina modification increased the rate of CO dissociation on metallic cobalt. An increased rate of CO dissociation may lead to coverage of the metal surface with carbon thereby decreasing hydrogenation and shifting the product selectivity towards high molecular weight products. Hence, alumina may promote the selectivity of cobalt catalysts via a synergistic effect. DA - 2018 DB - OpenUCT DP - University of Cape Town LK - https://open.uct.ac.za PB - University of Cape Town PY - 2018 T1 - Alumina-modified cobalt catalysts for the Fischer-Tropsch synthesis TI - Alumina-modified cobalt catalysts for the Fischer-Tropsch synthesis UR - http://hdl.handle.net/11427/29395 ER - en_ZA
dc.identifier.urihttp://hdl.handle.net/11427/29395
dc.identifier.vancouvercitationPetersen AP. Alumina-modified cobalt catalysts for the Fischer-Tropsch synthesis. []. University of Cape Town ,Engineering and the Built Environment ,Department of Chemical Engineering, 2018 [cited yyyy month dd]. Available from: http://hdl.handle.net/11427/29395en_ZA
dc.language.isoeng
dc.publisher.departmentDepartment of Chemical Engineering
dc.publisher.facultyFaculty of Engineering and the Built Environment
dc.publisher.institutionUniversity of Cape Town
dc.subject.otherChemical Engineering
dc.titleAlumina-modified cobalt catalysts for the Fischer-Tropsch synthesis
dc.typeDoctoral Thesis
dc.type.qualificationlevelDoctoral
dc.type.qualificationnamePhD
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
thesis_ebe_2018_petersen_anna_paula.pdf
Size:
14.32 MB
Format:
Adobe Portable Document Format
Description:
License bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
0 B
Format:
Item-specific license agreed upon to submission
Description:
Collections