Regional CO₂ flux estimates for South Africa through inverse modelling

Doctoral Thesis

2018

Permanent link to this Item
Authors
Journal Title
Link to Journal
Journal ISSN
Volume Title
Publisher
Publisher

University of Cape Town

License
Series
Abstract
Bayesian inverse modelling provides a top-down technique of verifying emissions and uptake of carbon dioxide (CO₂) from both natural and anthropogenic sources. It relies on accurate measurements of CO₂ concentrations at appropriately placed sites and "best-guess" initial estimates of the biogenic and anthropogenic emissions, together with uncertainty estimates. The Bayesian framework improves current estimates of CO₂ fluxes based on independent measurements of CO₂ concentrations while being constrained by the initial estimates of these fluxes. Monitoring, reporting and verification (MRV) is critical for establishing whether emission reducing activities to mitigate the effects of climate change are being effective, and the Bayesian inverse modelling approach of correcting CO₂ flux estimates provides one of the tools regulators and researchers can use to refine these emission estimates. South Africa is known to be the largest emitter of CO₂ on the African continent. The first major objective of this research project was to carry out such an optimal network design for South Africa. This study used fossil fuel emission estimates from a satellite product based on observations of night-time lights and locations of power stations (Fossil Fuel Data Assimilations System (FFDAS)), and biogenic productivity estimates from a carbon assessment carried out for South Africa to provide the initial CO₂ flux estimates and their uncertainties. Sensitivity analyses considered changes to the covariance matrix and spatial scale of the inversion, as well as different optimisation algorithms, to assess the impact of these specifications on the optimal network solution. This question was addressed in Chapters 2 and 3. The second major objective of this project was to use the Bayesian inverse modelling approach to obtain estimates of CO₂ fluxes over Cape Town and surrounding area. I collected measurements of atmospheric CO₂ concentrations from March 2012 until July 2013 at Robben Island and Hangklip lighthouses. CABLE (Community Atmosphere Biosphere Land Exchange), a land-atmosphere exchange model, provided the biogenic estimates of CO₂ fluxes and their uncertainties. Fossil fuel estimates and uncertainties were obtained by means of an inventory analysis for Cape Town. As an inventory analysis was not available for Cape Town, this exercise formed an additional objective of the project, presented in Chapter 4. A spatially and temporally explicit, high resolution surface of fossil fuel emission estimates was derived from road vehicle, aviation and shipping vessel count data, population census data, and industrial fuel use statistics, making use of well-established emission factors. The city-scale inversion for Cape Town solved for weekly fluxes of CO₂ emissions on a 1 km × 1 km grid, keeping fossil fuel and biogenic emissions as separate sources. I present these results for the Cape Town inversion under the proposed best available configuration of the Bayesian inversion framework in Chapter 5. Due to the large number of CO₂ sources at this spatial and temporal resolution, the reference inversion solved for weekly fluxes in blocks of four weeks at a time. As the uncertainties around the biogenic flux estimates were large, the inversion corrected the prior fluxes predominantly through changes to the biogenic fluxes. I demonstrated the benefit of using a control vector with separate terms for fossil fuel and biogenic flux components. Sensitivity analyses, solving for average weekly fluxes within a monthly inversion, as well as solving for separate weekly fluxes (i.e. solving in one week blocks) were considered. Sensitivity analyses were performed which focused on how changes to the prior information and prior uncertainty estimates and the error correlations of the fluxes would impact on the Bayesian inversion solution. The sensitivity tests are presented in Chapter 6. These sensitivity analyses indicated that refining the estimates of biogenic fluxes and reducing their uncertainties, as well as taking advantage of spatial correlation between areas of homogeneous biota would lead to the greatest improvement in the accuracy and precision of the posterior fluxes from the Cape Town metropolitan area.
Description

Reference:

Collections