Non-intrusive efficiency estimation of inverter-fed induction machines
Doctoral Thesis
2020
Permanent link to this Item
Authors
Journal Title
Link to Journal
Journal ISSN
Volume Title
Publisher
Publisher
Department
License
Series
Abstract
Motorised loads using induction machines use approximately 60% of the electricity globally. Most of these systems use three-phase induction motors due to their robustness and lower cost. They are often installed in continuously operating industrial plants/applications that require no operational interruptions. Whilst most of these induction machines are supplied from ideally sinusoidal supplies, applications are emerging where induction machines are fed from non-sinusoidal supplies. In particular, pulse width modulated inverters realize efficient control of induction machines in many automated industrial applications. From an energy management perspective, it is vital to continually assess the efficiency of induction machines in order to initiate replacement or economic repair. It is therefore of paramount importance that reliable and non-intrusive techniques for efficiency estimation of induction machines be investigated, that consider sinusoidal and non-sinusoidal supplies. This work proposes a non-intrusive efficiency estimation technique for inverter–fed induction motors that is based on harmonic regression analysis, harmonic equivalent circuit parameter estimation and harmonic loss analysis using limited measured data. Firstly, considerations for inverter-fed induction motor equivalent circuit modelling and parameter estimation techniques suitable for non-intrusive efficiency estimation are presented and the selection of one equivalent circuit for analysis is justified. Measured data is obtained from two different induction motors on a flexible 110kW test rig that utilises an HBM Gen 7i data acquisition system. By measuring voltage, current and input power at the supply terminals of the inverter-fed motor, the fundamental equivalent circuit parameters are estimated using population based incremental learning algorithm and compared with those obtained from the IEC 60034-2-1 Standard. The harmonic parameters are estimated using the bacterial foraging algorithm basing on the input impedance of the motor at each harmonic order. A finite harmonic loss analysis is carried out on the tested induction motors. The proposed techniques and harmonic loss analysis provide accurate efficiency estimates of within 1.5% error when compared to the direct method. Lastly, a related non-intrusive efficiency estimation technique is proposed that caters for a holistic loss contribution by all harmonics. The efficiency results from the proposed techniques are compared to those obtained from the IEC-TS 60034-2-3 Technical Specification and a direct method. The estimated efficiencies are comparable to those measured by the Technical Specification and a direct method within 2% error when tested on 37kW and 45kW PWM inverter-fed motors across the loading range. Furthermore, this work conducts a comprehensive non-intrusive rotor speed estimation comparative analysis in order to recommend the best technique(s), in terms of intrusiveness, accuracy and computational overhead. Errors of less than 1% have been reported in literature and experimental verification when using vibration analysis, Motor Current Signature Analysis (MCSA), Rotor Slot Harmonic (RSH) and Rotor Eccentricity Harmonic (REH) analysis techniques in inverter-fed IMs.
Description
Keywords
Reference:
Chirindo, M. 2020. Non-intrusive efficiency estimation of inverter-fed induction machines. . ,Faculty of Engineering and the Built Environment ,Department of Electrical Engineering. http://hdl.handle.net/11427/32573