Application of probabilistic deep learning models to simulate thermal power plant processes
Master Thesis
2022
Permanent link to this Item
Authors
Supervisors
Journal Title
Link to Journal
Journal ISSN
Volume Title
Publisher
Publisher
Department
License
Series
Abstract
Deep learning has gained traction in thermal engineering due to its applications to process simulations, the deeper insights it can provide and its abilities to circumvent the shortcomings of classic thermodynamic simulation approaches by capturing complex inter-dependencies. This works sets out to apply probabilistic deep learning to power plant operations using historic plant data. The first study presented, entails the development of a steady-state mixture density network (MDN) capable of predicting effective heat transfer coefficients (HTC) for the various heat exchanger components inside a utility scale boiler. Selected directly controllable input features, including the excess air ratio, steam temperatures, flow rates and pressures are used to predict the HTCs. In the second case study, an encoder-decoder mixturedensity network (MDN) is developed using recurrent neural networks (RNN) for the prediction of utility-scale air-cooled condenser (ACC) backpressure. The effects of ambient conditions and plant operating parameters, such as extraction flow rate, on ACC performance is investigated. In both case studies, hyperparameter searches are done to determine the best performing architectures for these models. Comparisons are drawn between the MDN model versus standard model architecture in both case studies. The HTC predictor model achieved 90% accuracy which equates to an average error of 4.89 W m2K across all heat exchangers. The resultant time-series ACC model achieved an average error of 3.14 kPa, which translate into a model accuracy of 82%.
Description
Keywords
Reference:
Raidoo, R.A. 2022. Application of probabilistic deep learning models to simulate thermal power plant processes. . ,Faculty of Engineering and the Built Environment ,Department of Mechanical Engineering. http://hdl.handle.net/11427/37790