The effects of water ingestion on high intensity cycling performance in a moderate ambient temperature
Master Thesis
1994
Permanent link to this Item
Authors
Journal Title
Link to Journal
Journal ISSN
Volume Title
Publisher
Publisher
University of Cape Town
Faculty
License
Series
Abstract
Eight endurance~trained cyclists rode as far as possible in 1 h on a stationary cyclesimulator in a moderate environment (20°C, 60% relative humidity, 3 m/s wind speed) while randomly receiving either no fluid (NF) or attempting to replace their ~1.7 l sweat loss measured in a previous 1 h familiarisation performance ride at ~85% of peak oxygen uptake (VO₂ peak) with artificially sweetened, coloured water (F). During F the cyclists drank 1.49 ± 0.14 1 (values are mean± SEM), of which 0.27 ± 0.08 1 remained in the stomach at the end of exercise and 0.20 ± 0.05 1 was urinated after the trial. Thus, only 1.02 ± 0.12 l of the ingested fluid was available to replace sweat losses during the 1 h performance ride. That fluid decreased the average heart rate from 166 ± 3 to 157 ± 5 beats/min (P < 0.0001) and reduced the final serum [Na+] and osmolalities from 143 ± 0.6 to 139 ± 0.6 mEq/1 (P < 0.005) and from 294 ± 1.7 to 290 ± 1.9 mOsm/1 (P = 0.05), respectively. Fluid ingestion did not attenuate rises in plasma anti diuretic hormone and angiotensin concentrations, or decrease the ~-15% falls in estimated plasma volume in the F and NF trials. Nor did fluid ingestion significantly effect the ~1.7 l/h sweat rates, the rises in rectal temperature (~36.6° to 38.3°C) or the ratings of perceived exertion in the two trials. Ingestion of ~1.5 l of fluid produced an uncomfortable stomach fullness and reduced the distance covered in 1 h from 43.1 ± 0. 7 to 42.3 ± 0.6 km (P<0.05). Thus, trying to replace > 1.0 l/h sweat losses during high-intensity, short duration exercise in a moderate environment does not induce beneficial physiological effects, and may impair exercise performance.
Description
Reference:
Robinson, T. 1994. The effects of water ingestion on high intensity cycling performance in a moderate ambient temperature. University of Cape Town.