Response of composite and steel V-structures to localised air blast loading - Numerical and Experimental
Thesis / Dissertation
2023
Permanent link to this Item
Authors
Journal Title
Link to Journal
Journal ISSN
Volume Title
Publisher
Publisher
Department
License
Series
Abstract
This research investigated the blast performance of Glass-Fibre Reinforced Polymer (GFRP) Vstructures compared to equivalent mass steel V-structures. The blast performance was measured in terms of three metrics, namely, impulse transferred, maximum mid-point deflection and permanent damage/deformation. A series of blast experiments were performed on manufactured GFRP and steel V-structures. The GFRP V-structures were made using Vacuum Infusion (VI), using a 400 g m−2 woven E-glass and a Prime 20LV resin with a Low Viscosity (LV) slow hardener. The steel V-structures were manufactured by laser cutting the flat panel profiles from a sheet of 2 mm thick DOMEX-700 MC sheet and then Computer Numerical Control (CNC) bending them to the desired profile. Three panel configurations were experimentally blast tested, namely, a 105° V-angle with a 32 mm V-tip radius, a 105° V-angle with a 62 mm V-tip radius and a 120° V-angle with a 32 mm V-tip radius. Blast tests were performed by detonating PE4 charges ranging from 10 g to 40 g at a Stand-Off Distance (SOD) of 34 mm. Digital Image Correlation (DIC) was used to track the transient deformation of the V-structures, while the final deformed profile of the V-structures was determined using a 3D scanner. A series of numerical simulations were also performed on the GFRP and steel V-structures. The simulations used quarter symmetry models to utilise the symmetry of the experimental setup. The material model parameters were obtained from a series of material tests carried out on GFRP and steel specimens. The simulations were validated against the experimental results for a number of test cases for impulse transfer, and transient and permanent deformation. The simulations were then extended to look at a range of V-tip radii, V-angles and charge masses, while the SOD was held constant. For the steel V-structures, the blast experiments found that increasing the V-tip radius and Vangle resulted in an increase in impulse transferred as well as transient and permanent mid-point deflection. This result was confirmed when the set of V-tip radii investigated was increased in the simulations. The trends in the results for the GFRP V-structures were similar to the equivalent steel plates. The delamination and total crack length were observed to increase with an increase in V-angle and charge mass. In general, the study found that GFRP V-structures were inferior to their equivalent mass steel V-structures in terms of panel rupture threshold. The GFRP V-structures exhibited lower transient deformation, but panel rupture on the rear face was observed at a lower charge mass. No tearing or rupture was observed in the steel V-structures tested at similar charge masses.
Description
Keywords
Reference:
Shekhar, V. 2023. Response of composite and steel V-structures to localised air blast loading - Numerical and Experimental. . ,Faculty of Engineering and the Built Environment ,Department of Mechanical Engineering. http://hdl.handle.net/11427/40414