Simulation-based optimisation of public transport networks

dc.contributor.advisorZuidgeest, Mark H P
dc.contributor.advisorJoubert, Johan W
dc.contributor.authorNnene, Obiora Amamifechukwu
dc.date.accessioned2020-10-15T12:04:55Z
dc.date.available2020-10-15T12:04:55Z
dc.date.issued2020
dc.date.updated2020-10-15T12:04:31Z
dc.description.abstractPublic transport network design deals with finding the most efficient network solution among a set of alternatives, that best satisfies the often-conflicting objectives of different network stakeholders like passengers and operators. Simulation-based Optimisation (SBO) is a discipline that solves optimisation problems by combining simulation and optimisation models. The former is used to evaluate the alternative solutions, while the latter searches for the optimal solution among them. A SBO model for designing public transport networks is developed in this dissertation. The context of the research is the MyCiTi Bus Rapid Transit (BRT) network in the City of Cape Town, South Africa. A multi-objective optimisation algorithm known as the Non-dominated Sorting Genetic Algorithm (NSGA-II) is integrated with Activity-based Travel Demand Model (ABTDM) known as the Multi-Agent Transport Simulation (MATSim). The steps taken to achieve the research objectives are first to generate a set of feasible network alternatives. This is achieved by manipulating the existing routes of the MyCiTi BRT with a computer based heuristic algorithm. The process is guided by feasibility conditions which guarantee that each network has routes that are acceptable for public transport operations. MATSim is then used to evaluate the generated alternatives, by simulating the daily plans of travellers on each network. A typical daily plan is a sequential ordering of all the trips made by a commuter within a day. Automated Fare Collection (AFC) data from the MyCiTi BRT was used to create this plan. Lastly, the NSGA-II is used to search for an efficient set of network solutions, also known as a Pareto set or a non-dominated set in the context of Multi-objective Optimisation (MOO). In each generation of the optimisation process, MATSim is used to evaluate the current solution. Hence a suitable encoding scheme is defined to enable a smooth iv translation of the solution between the NSGA-II and MATSim. Since the solution of multi-objective optimisation problems is a set of network solutions, further analysis is done to identify the best compromise solution in the Pareto set. Extensive computational testing of the SBO model has been carried out. The tests involve evaluating the computational performance of the model. The first test measures the repeatability of the model's result. The second computational test considers its performance relative to indicators like the hypervolume and spacing indicators as well as an analysis of the model's Pareto front. Lastly, a benchmarking of the model's performance when compared with other optimisation algorithms is carried out. After testing the so-called Simulation-based Transit Network Design Model (SBTNDM), it is then used to design pubic transport networks for the MyCiTi BRT. Two applications are considered for the model. The first application deals with the public transport performance of the network solutions in the Pareto front obtained from the SBTNDM. In this case study, different transport network indicators are used to measure how each solution performs. In the second scenario, network design is done for the 85th percentile of travel demand on the MyCiTi network over 12 months. The results show that the model can design robust transit networks. The use of simulation as the agency of optimisation of public transport networks represents the main innovation of the work. The approach has not been used for public transport network design to date. The specific contribution of this work is in the improved modelling of public transport user behaviour with Agent-based Simulation (ABS) within a Transit Network Design (TND) framework. This is different from the conventional approaches used in the literature, where static trip-based travel demand models like the four-step model have mostly been used. Another contribution of the work is the development of a robust technique that facilitates the simultaneous optimisation of network routes and their operational frequencies. Future endeavours will focus on extending the network design model to a multi-modal context.
dc.identifier.apacitationNnene, O. A. (2020). <i>Simulation-based optimisation of public transport networks</i>. (). ,Engineering and the Built Environment ,Department of Civil Engineering. Retrieved from http://hdl.handle.net/11427/32308en_ZA
dc.identifier.chicagocitationNnene, Obiora Amamifechukwu. <i>"Simulation-based optimisation of public transport networks."</i> ., ,Engineering and the Built Environment ,Department of Civil Engineering, 2020. http://hdl.handle.net/11427/32308en_ZA
dc.identifier.citationNnene, O.A. 2020. Simulation-based optimisation of public transport networks. . ,Engineering and the Built Environment ,Department of Civil Engineering. http://hdl.handle.net/11427/32308en_ZA
dc.identifier.ris TY - Doctoral Thesis AU - Nnene, Obiora Amamifechukwu AB - Public transport network design deals with finding the most efficient network solution among a set of alternatives, that best satisfies the often-conflicting objectives of different network stakeholders like passengers and operators. Simulation-based Optimisation (SBO) is a discipline that solves optimisation problems by combining simulation and optimisation models. The former is used to evaluate the alternative solutions, while the latter searches for the optimal solution among them. A SBO model for designing public transport networks is developed in this dissertation. The context of the research is the MyCiTi Bus Rapid Transit (BRT) network in the City of Cape Town, South Africa. A multi-objective optimisation algorithm known as the Non-dominated Sorting Genetic Algorithm (NSGA-II) is integrated with Activity-based Travel Demand Model (ABTDM) known as the Multi-Agent Transport Simulation (MATSim). The steps taken to achieve the research objectives are first to generate a set of feasible network alternatives. This is achieved by manipulating the existing routes of the MyCiTi BRT with a computer based heuristic algorithm. The process is guided by feasibility conditions which guarantee that each network has routes that are acceptable for public transport operations. MATSim is then used to evaluate the generated alternatives, by simulating the daily plans of travellers on each network. A typical daily plan is a sequential ordering of all the trips made by a commuter within a day. Automated Fare Collection (AFC) data from the MyCiTi BRT was used to create this plan. Lastly, the NSGA-II is used to search for an efficient set of network solutions, also known as a Pareto set or a non-dominated set in the context of Multi-objective Optimisation (MOO). In each generation of the optimisation process, MATSim is used to evaluate the current solution. Hence a suitable encoding scheme is defined to enable a smooth iv translation of the solution between the NSGA-II and MATSim. Since the solution of multi-objective optimisation problems is a set of network solutions, further analysis is done to identify the best compromise solution in the Pareto set. Extensive computational testing of the SBO model has been carried out. The tests involve evaluating the computational performance of the model. The first test measures the repeatability of the model's result. The second computational test considers its performance relative to indicators like the hypervolume and spacing indicators as well as an analysis of the model's Pareto front. Lastly, a benchmarking of the model's performance when compared with other optimisation algorithms is carried out. After testing the so-called Simulation-based Transit Network Design Model (SBTNDM), it is then used to design pubic transport networks for the MyCiTi BRT. Two applications are considered for the model. The first application deals with the public transport performance of the network solutions in the Pareto front obtained from the SBTNDM. In this case study, different transport network indicators are used to measure how each solution performs. In the second scenario, network design is done for the 85th percentile of travel demand on the MyCiTi network over 12 months. The results show that the model can design robust transit networks. The use of simulation as the agency of optimisation of public transport networks represents the main innovation of the work. The approach has not been used for public transport network design to date. The specific contribution of this work is in the improved modelling of public transport user behaviour with Agent-based Simulation (ABS) within a Transit Network Design (TND) framework. This is different from the conventional approaches used in the literature, where static trip-based travel demand models like the four-step model have mostly been used. Another contribution of the work is the development of a robust technique that facilitates the simultaneous optimisation of network routes and their operational frequencies. Future endeavours will focus on extending the network design model to a multi-modal context. DA - 2020_ DB - OpenUCT DP - University of Cape Town KW - Simulation-based optimisation KW - transit network design KW - multi-objective optimisation KW - meta-heuristics KW - agent-based simulation LK - https://open.uct.ac.za PY - 2020 T1 - Simulation-based optimisation of public transport networks TI - Simulation-based optimisation of public transport networks UR - http://hdl.handle.net/11427/32308 ER - en_ZA
dc.identifier.urihttp://hdl.handle.net/11427/32308
dc.identifier.vancouvercitationNnene OA. Simulation-based optimisation of public transport networks. []. ,Engineering and the Built Environment ,Department of Civil Engineering, 2020 [cited yyyy month dd]. Available from: http://hdl.handle.net/11427/32308en_ZA
dc.language.rfc3066eng
dc.publisher.departmentDepartment of Civil Engineering
dc.publisher.facultyFaculty of Engineering and the Built Environment
dc.subjectSimulation-based optimisation
dc.subjecttransit network design
dc.subjectmulti-objective optimisation
dc.subjectmeta-heuristics
dc.subjectagent-based simulation
dc.titleSimulation-based optimisation of public transport networks
dc.typeDoctoral Thesis
dc.type.qualificationlevelDoctoral
dc.type.qualificationlevelPhD
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
thesis_ebe_2020_nnene obiora amamifechukwu.pdf
Size:
22.38 MB
Format:
Adobe Portable Document Format
Description:
License bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
0 B
Format:
Item-specific license agreed upon to submission
Description:
Collections