Investigating the chemical space and metabolic bioactivation of natural products and cross-reactivity of chemical inhibitors in CYP450 phenotyping
Doctoral Thesis
2014
Permanent link to this Item
Authors
Supervisors
Journal Title
Link to Journal
Journal ISSN
Volume Title
Publisher
Publisher
University of Cape Town
Department
Faculty
License
Series
Abstract
Natural products have been exploited by humans as the most consistently reliable source of medicines for hundreds of years. Owing to the great diversity in chemical scaffolds they encompass, these compounds provide an almost limitless starting point for the discovery and development of novel semi-synthetic or wholly synthetic drugs. In Africa, and many other parts of the world, natural products in the form of herbal remedies are still used as primary therapeutic interventions by populations far removed from conventional healthcare facilities. However, unlike conventional drugs that typically undergo extensive safety studies during development, traditional remedies are often not subjected to similar evaluation and could therefore harbour unforeseen risks alongside their established efficacy. A comparison of the ‘drug-like properties’ of 335 natural products from medicinal plants reported in the African Herbal Pharmacopoeia with those of 608 compounds from the British Pharmacopoeia 2009 was performed using in silico tools. The data obtained showed that the natural products differed significantly from conventional drugs with regard to molecular weight, rotatable bonds and H-bond donor distributions but not with regard to lipophilicity (cLogP) and H-bond acceptor distributions. In general, the natural products were found to exhibit a higher degree of deviation from Lipinski’s ‘Rule-of-Five’. Additionally, these compounds possessed a slightly greater number of structural alerts per molecule compared to conventional drugs, suggesting a higher likelihood of undergoing metabolic bioactivation.
Description
Includes bibliographical references.
Keywords
Reference:
Njuguna, N. 2014. Investigating the chemical space and metabolic bioactivation of natural products and cross-reactivity of chemical inhibitors in CYP450 phenotyping. University of Cape Town.