Non-linear finite element analyses of the aortic heart valve
Thesis
2004
Permanent link to this Item
Authors
Supervisors
Journal Title
Link to Journal
Journal ISSN
Volume Title
Publisher
Publisher
University of Cape Town
Faculty
License
Series
Abstract
Finite element models of the aortic heart valve have been successfully used in the past to gain insight into the mechanics of the valve and to aid in understanding of valve failure. Moreover such models are indispensable tools for further developments in heart valve prosthetic design. In previous stress analyses linear elastic constitutive models have predominantly been used to model aortic valve leaflets, despite aortic valve tissue showing highly non-linear behaviour in tension tests. In view of recent developments towards tissue engineering of heart valves, these linear constitutive models of aortic valve leaflets are not likely to produce results sufficiently accurate to correlate cell behaviour with mechanical stimuli. To study how non-linear material behaviour affects the results of stress analyses of the aortic valve, static finite element analyses of the valve including the aortic root and leaflets have been carried out. An isotropic linear elastic material model was assigned to the aortic root with Young's modulus adjusted for the simulated compliance to match physiological values. Linear elastic models for the aortic valve leaflets with parameters used in previous studies were then compared with hyperelastic materials. The parameters used for the exponential strain energy function of the latter were obtained from fits of uniaxial tension test results of fresh porcine aortic valve leaflets. As natural leaflets show anisotropy with a pronounced stiff direction along the circumference of the valve, isotropic models of the leaflets were extended to account for this behaviour by incorporating transverse isotropy. The results display a stark impact of a transversely isotropic hyperelastic material on leaflet mechanics, Le. increased coaptation with peak values of stress and strain in the elastic limit. Interestingly, the alignment of maximum principal stress of all models seems to approximately follow the coarse collagen fibre distribution found ill aortic valve leaflets.
Description
Includes bibliographical references.
Keywords
Reference:
Koch, T. 2004. Non-linear finite element analyses of the aortic heart valve. University of Cape Town.