A new connectivity strategy for wireless mesh networks using dynamic spectrum access
Doctoral Thesis
2021
Permanent link to this Item
Authors
Journal Title
Link to Journal
Journal ISSN
Volume Title
Publisher
Publisher
Department
Faculty
License
Series
Abstract
The introduction of Dynamic Spectrum Access (DSA) marked an important juncture in the evolution of wireless networks. DSA is a spectrum assignment paradigm where devices are able to make real-time adjustment to their spectrum usage and adapt to changes in their spectral environment to meet performance objectives. DSA allows spectrum to be used more efficiently and may be considered as a viable approach to the ever increasing demand for spectrum in urban areas and the need for coverage extension to unconnected communities. While DSA can be applied to any spectrum band, the initial focus has been in the Ultra-High Frequency (UHF) band traditionally used for television broadcast because the band is lightly occupied and also happens to be ideal spectrum for sparsely populated rural areas. Wireless access in general is said to offer the most hope in extending connectivity to rural and unconnected peri-urban communities. Wireless Mesh Networks (WMN) in particular offer several attractive characteristics such as multi-hopping, ad-hoc networking, capabilities of self-organising and self-healing, hence the focus on WMNs. Motivated by the desire to leverage DSA for mesh networking, this research revisits the aspect of connectivity in WMNs with DSA. The advantages of DSA when combined with mesh networking not only build on the benefits, but also creates additional challenges. The study seeks to address the connectivity challenge across three key dimensions, namely network formation, link metric and multi-link utilisation. To start with, one of the conundrums faced in WMNs with DSA is that the current 802.11s mesh standard provides limited support for DSA, while DSA related standards such as 802.22 provide limited support for mesh networking. This gap in standardisation complicates the integration of DSA in WMNs as several issues are left outside the scope of the applicable standard. This dissertation highlights the inadequacy of the current MAC protocol in ensuring TVWS regulation compliance in multi-hop environments and proposes a logical link MAC sub-layer procedure to fill the gap. A network is considered compliant in this context if each node operates on a channel that it is allowed to use as determined for example, by the spectrum database. Using a combination of prototypical experiments, simulation and numerical analysis, it is shown that the proposed protocol ensures network formation is accomplished in a manner that is compliant with TVWS regulation. Having tackled the compliance problem at the mesh formation level, the next logical step was to explore performance improvement avenues. Considering the importance of routing in WMNs, the study evaluates link characterisation to determine suitable metric for routing purposes. Along this dimension, the research makes two main contributions. Firstly, A-link-metric (Augmented Link Metric) approach for WMN with DSA is proposed. A-link-metric reinforces existing metrics to factor in characteristics of a DSA channel, which is essential to improve the routing protocol's ranking of links for optimal path selection. Secondly, in response to the question of “which one is the suitable metric?”, the Dynamic Path Metric Selection (DPMeS) concept is introduced. The principal idea is to mechanise the routing protocol such that it assesses the network via a distributed probing mechanism and dynamically binds the routing metric. Using DPMeS, a routing metric is selected to match the network type and prevailing conditions, which is vital as each routing metric thrives or recedes in performance depending on the scenario. DPMeS is aimed at unifying the years worth of prior studies on routing metrics in WMNs. Simulation results indicate that A-link-metric achieves up to 83.4 % and 34.6 % performance improvement in terms of throughput and end-to-end delay respectively compared to the corresponding base metric (i.e. non-augmented variant). With DPMeS, the routing protocol is expected to yield better performance consistently compared to the fixed metric approach whose performance fluctuates amid changes in network setup and conditions. By and large, DSA-enabled WMN nodes will require access to some fixed spectrum to fall back on when opportunistic spectrum is unavailable. In the absence of fully functional integrated-chip cognitive radios to enable DSA, the immediate feasible solution for the interim is single hardware platforms fitted with multiple transceivers. This configuration results in multi-band multi-radio node capability that lends itself to a variety of link options in terms of transmit/receive radio functionality. The dissertation reports on the experimental performance evaluation of radios operating in the 5 GHz and UHF-TVWS bands for hybrid back-haul links. It is found that individual radios perform differently depending on the operating parameter settings, namely channel, channel-width and transmission power subject to prevailing environmental (both spectral and topographical) conditions. When aggregated, if the radios' data-rates are approximately equal, there is a throughput and round-trip time performance improvement of 44.5 - 61.8 % and 7.5 - 41.9 % respectively. For hybrid links comprising radios with significantly unequal data-rates, this study proposes an adaptive round-robin (ARR) based algorithm for efficient multilink utilisation. Numerical analysis indicate that ARR provides 75 % throughput improvement. These results indicate that network optimisation overall requires both time and frequency division duplexing. Based on the experimental test results, this dissertation presents a three-layered routing framework for multi-link utilisation. The top layer represents the nodes' logical interface to the WMN while the bottom layer corresponds to the underlying physical wireless network interface cards (WNIC). The middle layer is an abstract and reductive representation of the possible and available transmission, and reception options between node pairs, which depends on the number and type of WNICs. Drawing on the experimental results and insight gained, the study builds criteria towards a mechanism for auto selection of the optimal link option. Overall, this study is anticipated to serve as a springboard to stimulate the adoption and integration of DSA in WMNs, and further development in multi-link utilisation strategies to increase capacity. Ultimately, it is hoped that this contribution will collectively contribute effort towards attaining the global goal of extending connectivity to the unconnected.
Description
Keywords
Reference:
Maliwatu, R. 2021. A new connectivity strategy for wireless mesh networks using dynamic spectrum access. . ,Faculty of Science ,Department of Computer Science. http://hdl.handle.net/11427/33776