Dynamic operability assessment : a mathematical programming approach based on Q-parametrization

Doctoral Thesis


Permanent link to this Item
Journal Title
Link to Journal
Journal ISSN
Volume Title

University of Cape Town

The ability of a process plant to guarantee high product quality, in terms of low variability, is emerging as a defining feature when distinguishing between alternative suppliers. The extent to which this can be achieved is termed a plant's dynamic operability and is a function of both the plant design and the control system design. In the limit, however, the closedloop performance is determined by the properties inherent in the plant. This realization of the interrelationship between a plant design and its achievable closed-loop performance has motivated research toward systematic techniques for screening inherently inferior designs. Pioneering research in the early 1980's identified right-half-plane transmission zeros, time delays, input constraints and model uncertainty as factors that limit the achievable closedloop performance of a process. Quantifying the performance-limiting effect of combinations of these factors has proven to be a challenging problem, as reflected in the literature. It is the aim of this thesis to develop a systematic procedure for dynamic operability assessment in the presence of combinations of performance-limiting factors. The approach adopted in this thesis is based on the Q-parametrization of stabilizing linear feedback controllers and involves posing dynamic operability assessment as a mathematical programming problet? In the proposed formulation, a convex objective function, reflecting a measure of closed-loop performance, is optimized over all stable Q, subject. to a set of constraints on the closed-loop behavior, which for many specifications of interest is convex. A discrete-time formulation is chosen so as to allow for the convenient hand.ling of time delays and time-domain constraints. An important feature of the approach is that, due to the convexity, global optimality is guaranteed. Furthermore, the fact that Q parametrizes all stabilizing linear feedback controllers implies that the performance at the optimum represents the best possible performance for any such controller. The results are thus not biased by controller type or tuning, apart from the requirement that the controller be linear.

Bibliography: pages 197-208.