USF-1 is critical for maintaining genome integrity in response to UV-induced DNA photolesions

Series
Abstract
Author Summary UV is responsible for DNA damage and genetic alterations of key players of the Nucleotide Excision Repair (NER) machinery promote the development of UV-induced skin cancers. The NER is the major DNA-repair process involved in the recognition and removal of UV-mediated DNA damage. Different factors participating in this DNA repair are essential, and their mutations are associated with severe genetic diseases such as Cockayne Syndrome and Xeroderma Pigmentosum. Here, we show for the first time that the specific regulation of expression in response to UV of two NER factors CSA and HR23A is required to efficiently remove DNA lesions and to maintain genomic stability. We also implicate the USF-1 transcription factor in the regulation of the expression of these factors using in vitro and in vivo models. This finding is particularly important because UV is the major cause of skin cancers and dramatically compromises patients with highly sensitive genetic diseases.
Description

Reference:

Collections