Molecular selectivity by host-guest methods

Doctoral Thesis


Permanent link to this Item
Journal Title
Link to Journal
Journal ISSN
Volume Title
The Host-Guest inclusion crystallization method has long been used for the separation of closely related compounds. Especially for the separation of isomers which presented difficulties in techniques like distillation or chromatography. In this study, different host systems were used to separate isomers of trimethoxybenzenes, lutidines, methylacetophenones and xylenols. Isomers are compounds with the same molecular formula but different arrangement of their atoms. They are often produced as mixtures when synthesised in large quantities by various industries and are more valuable as purified single components. Thus, it is important to separate them into their individual components. The process of Host-Guest method is dependent on the phenomenon of molecular recognition between the host and guest molecules, and this, in turn, relies on the sum of non-bonded, secondary interactions which impinge on the final crystalline product. This is especially the case for enantiomers which are isomers with the same boiling points and melting point. However, enantiomers differ by their ability to diffract polarised light. Although countless methods have been used for their separation, one method that has been proven to be certainly successful on this path was the “family method”. The “Dutch resolution method” or the “family method” makes use of the crystallization technique by mixing similar host compounds to separate enantiomers. However, the improvement of the end results was not understood. In fact, the whole process has been done just on results and no analysis of the actual activity occurring at the molecular level was investigated. In this research, the Host-Guest chemistry method was applied with the aim of separating several isomers compounds in the intention of understanding the selectivity characteristics of a particular host. For the purpose of the analysis, structural isomers with close boiling points were selected. Competition experiments were set to survey which of the isomers were a better fit for a particular host. After analysis of the different crystal material obtained from crystallization experiments with NMR techniques, various trends were observed. X-Ray crystallography was employed to elucidate the crystal structures of the different compound formed by Host-Guest chemistry. The new complexes were further analysed by thermal analysis (TGA, DSC), kinetics of desolvation, Hirshfeld surface analysis, and activation energy of desolvation-analysis techniques. During the separation of the trimethoxybenzene (TMB) isomers, cholic acid and deoxycholic acid' hosts were used in chapter 3. It was found that each host separated the isomers differently. That was independent of the closeness of their molecular structures. The difference in selectivity was attributed to the arrangement of each host in the structure obtained with the guest compounds. Separation of lutidines was carried out in chapters 4 and 5. The first separation consisted of the study of the fifteen pairwise combinations of the isomers with 3,3′-bis(9-hydroxy-9- fluorenyl)2−2′- binaphthyl which is presented in chapter 4. The second analysis was carried out with host 2,2'bis(1-hydroxy-4,5-dihydro-2,3:6,7-dibenzocycloheptatrien-1-yl)-biphenyl. Nevertheless, both hosts preferred 3,4-lutidine. Four additional hosts were used to simulate the “Dutch resolution method” in chapter 5. Further analysis of torsion angles was performed over the five hosts for the complexes formed with 2,4-lutidine and 3,5-lutidine. The host characterized by unbridged phenyl moieties and the one characterized by bulky tert-butyl groups was found to prefer 3,5-lutidine. In chapter 6, deoxycholic acid resolved the 2-methylcyclohexanone (2MCH) but not 3- methylcyclohexanone (3MCH) during the separation of methylcyclohexanone isomers. However, during the competition experiment, it was found that when 2MCH was mixed with 3MCH, the latter was resolved as an S-enantiomer. Kinetics of desolvation studied resulted in the determination of the activation energies of the Host-Guest complexes and was like the trend observed by 1H NMR analysis. Chapter 7 was focused on the synergistic effect of mixed hosts system. This was to emphasize the impact that a mixture of compounds with similar structural composition may provide. Competition experiments were done with the 15 pairs of xylenol isomers with 4,4'- isopropylidene Bisphenol. Three of these pairs were selected for further analysis with two similar bisphenol hosts. One interesting structure was obtained with 4,4-isopropylidene Bisphenol and 4,4'-(9-Fluorenylidene) Bisphenol with a guest mixture. This is an unusual result as crystal structures comprising two hosts with two guests are rare.