Browsing by Subject "Cloning"
Now showing 1 - 15 of 15
Results Per Page
Sort Options
- ItemOpen AccessThe cloning and characterisation of an endoglucanase and an endoxylanase from Clostridium acetobutylicum in Escherichia coli(1988) Zappe, Harold; Woods, David R; Jones, David TClostridium acetobutylicum P262 is an endospore forming Gram-positive obligate anaerobe which has been used for the industrial production of acetone and butanol. Strains of C. acetobutylicum have been reported to exhibit some activity towards cellulosic and hemicellulosic substrates. The aim of this thesis was to establish a genebank of C. acetobutylicum P262 DNA in Escherichia coli and to isolate and characterise genes encoding enzymes which show activity towards hemicellulose and cellulose.
- ItemOpen AccessDifferences in genotype and virulence among four multidrug-resistant Streptococcus pneumoniae isolates belonging to the PMEN1 clone(Public Library of Science, 2011) Hiller, N Luisa; Eutsey, Rory A; Powell, Evan; Earl, Joshua P; Janto, Benjamin; Martin, Darren P; Dawid, Suzanne; Ahmed, Azad; Longwell, Mark J; Dahlgren, Margaret EWe report on the comparative genomics and characterization of the virulence phenotypes of four S. pneumoniae strains that belong to the multidrug resistant clone PMEN1 (Spain 23F ST81). Strains SV35-T23 and SV36-T3 were recovered in 1996 from the nasopharynx of patients at an AIDS hospice in New York. Strain SV36-T3 expressed capsule type 3 which is unusual for this clone and represents the product of an in vivo capsular switch event. A third PMEN1 isolate - PN4595-T23 - was recovered in 1996 from the nasopharynx of a child attending day care in Portugal, and a fourth strain - ATCC700669 - was originally isolated from a patient with pneumococcal disease in Spain in 1984. We compared the genomes among four PMEN1 strains and 47 previously sequenced pneumococcal isolates for gene possession differences and allelic variations within core genes. In contrast to the 47 strains - representing a variety of clonal types - the four PMEN1 strains grouped closely together, demonstrating high genomic conservation within this lineage relative to the rest of the species. In the four PMEN1 strains allelic and gene possession differences were clustered into 18 genomic regions including the capsule, the blp bacteriocins, erythromycin resistance, the MM1-2008 prophage and multiple cell wall anchored proteins. In spite of their genomic similarity, the high resolution chinchilla model was able to detect variations in virulence properties of the PMEN1 strains highlighting how small genic or allelic variation can lead to significant changes in pathogenicity and making this set of strains ideal for the identification of novel virulence determinants.
- ItemOpen AccessHigh-throughput sequencing enhanced phage display identifies peptides that bind mycobacteria(Public Library of Science, 2013) Ngubane, Nqobile A C; Gresh, Lionel; Ioerger, Thomas R; Sacchettini, James C; Zhang, Yanjia J; Rubin, Eric J; Pym, Alexander; Khati, MakobetsaBacterial cell wall components have been previously used as infection biomarkers detectable by antibodies. However, it is possible that the surface of the Mycobacterium tuberculosis ( M. tb ), the causative agent of tuberculosis (TB), also possesses molecules which might be non-antigenic. This makes the probing of biomarkers on the surface of M. tb cell wall difficult using antibodies. Here we demonstrate the use of phage display technology to identify peptides that bind to mycobacteria. We identified these clones using both random clone picking and high throughput sequencing. We demonstrate that random clone picking does not necessarily identify highly enriched clones. We further showed that the clone displaying the CPLHARLPC peptide which was identified by Illumina sequencing as the most enriched, binds better to mycobacteria than three clones selected by random picking. Using surface plasmon resonance, we showed that chemically synthesised CPLHARLPC peptide binds to a 15 KDa peptide from M.tb H37Rv whole cell lysates. These observations demonstrate that phage display technology combined with high-throughput sequencing is a powerful tool to identify peptides that can be used for investigating potential non-antigenic biomarkers for TB and other bacterial infections.
- ItemOpen AccessIL-4 receptor-alpha-dependent control of Cryptococcus neoformans in the early phase of pulmonary infection(Public Library of Science, 2014) Grahnert, Andreas; Richter, Tina; Piehler, Daniel; Eschke, Maria; Schulze, Bianca; Müller, Uwe; Protschka, Martina; Köhler, Gabriele; Sabat, Robert; Brombacher, Frank; Alber, GottfriedCryptococcus neoformans is an opportunistic fungal pathogen that causes lung inflammation and meningoencephalitis in immunocompromised people. Previously we showed that mice succumb to intranasal infection by induction of pulmonary interleukin (IL)-4Rα-dependent type 2 immune responses, whereas IL-12-dependent type 1 responses confer resistance. In the experiments presented here, IL-4Rα −/− mice unexpectedly show decreased fungal control early upon infection with C. neoformans , whereas wild-type mice are able to control fungal growth accompanied by enhanced macrophage and dendritic cell recruitment to the site of infection. Lower pulmonary recruitment of macrophages and dendritic cells in IL-4Rα −/− mice is associated with reduced pulmonary expression of CCL2 and CCL20 chemokines. Moreover, IFN-γ and nitric oxide production are diminished in IL-4Rα −/− mice compared to wild-type mice. To directly study the potential mechanism(s) responsible for reduced production of IFN-γ, conventional dendritic cells were stimulated with C. neoformans in the presence of IL-4 which results in increased IL-12 production and reduced IL-10 production. Together, a beneficial role of early IL-4Rα signaling is demonstrated in pulmonary cryptococcosis, which contrasts with the well-known IL-4Rα-mediated detrimental effects in the late phase.
- ItemOpen AccessLimited neutralizing antibody specificities drive neutralization escape in early HIV-1 subtype C infection(Public Library of Science, 2009) Moore, Penny L; Ranchobe, Nthabeleng; Lambson, Bronwen E; Gray, Elin S; Cave, Eleanor; Abrahams, Melissa-Rose; Bandawe, Gama; Mlisana, Koleka; Karim, Salim S Abdool; Williamson, CarolynAuthor Summary Most HIV-1 infected individuals develop neutralizing antibodies against their own virus, termed an autologous neutralizing response. It is known that this response exerts pressure on the envelope of HIV, the target of such antibodies, resulting in neutralization escape. Here we have identified the targets of these antibodies and the precise genetic basis of neutralization escape in 4 individuals infected with HIV-1 subtype C. We show that V1V2 is commonly involved in escape, and that the C3 region is also a target in some cases. The latter observation confirms this region is exposed in subtype C, unlike subtype B. We show that neutralization escape is conferred by a few amino acid mutations, some of which are outside the antibody target site. Moreover, escape from these limited specificities even within a single individual occurs via a variety of different pathways involving substitutions, indels and glycan shifts. The finding in 2 individuals that an anti-C3 response developed first, followed by an anti-V1V2 response, suggests there may be specific regions of envelope particularly vulnerable to antibody neutralization. Overall, we propose a mechanistic explanation for how HIV-1 epitopes drive sequential waves of neutralization escape in early subtype C infection.
- ItemOpen AccessMicrobial ligand costimulation drives neutrophilic steroid-refractory asthma(Public Library of Science, 2015) Hadebe, Sabelo; Kirstein, Frank; Fierens, Kaat; Chen, Kong; Drummond, Rebecca A; Vautier, Simon; Sajaniemi, Sara; Murray, Graeme; Williams, David L; Redelinghuys, Pierre; Reinhart, Todd A; Junecko, Beth A Fallert; Kolls, Jay K; Lambrecht, Bart N; Brombacher, Frank; Brown, Gordon DAsthma is a heterogeneous disease whose etiology is poorly understood but is likely to involve innate responses to inhaled microbial components that are found in allergens. The influence of these components on pulmonary inflammation has been largely studied in the context of individual agonists, despite knowledge that they can have synergistic effects when used in combination. Here we have explored the effects of LPS and β-glucan, two commonly-encountered microbial agonists, on the pathogenesis of allergic and non-allergic respiratory responses to house dust mite allergen. Notably, sensitization with these microbial components in combination acted synergistically to promote robust neutrophilic inflammation, which involved both Dectin-1 and TLR-4. This pulmonary neutrophilic inflammation was corticosteroid-refractory, resembling that found in patients with severe asthma. Thus our results provide key new insights into how microbial components influence the development of respiratory pathology.
- ItemOpen AccessMycobacterium tuberculosis peptides presented by HLA-E molecules are targets for human CD8 T-cells with cytotoxic as well as regulatory activity(Public Library of Science, 2010) Joosten, Simone A; van Meijgaarden, Krista E; van Weeren, Pascale C; Kazi, Fatima; Geluk, Annemieke; Savage, Nigel D L; Drijfhout, Jan W; Flower, Darren R; Hanekom, Willem A; Klein, Michèl RTuberculosis (TB) is an escalating global health problem and improved vaccines against TB are urgently needed. HLA-E restricted responses may be of interest for vaccine development since HLA-E displays very limited polymorphism (only 2 coding variants exist), and is not down-regulated by HIV-infection. The peptides from Mycobacterium tuberculosis (Mtb) potentially presented by HLA-E molecules, however, are unknown. Here we describe human T-cell responses to Mtb-derived peptides containing predicted HLA-E binding motifs and binding-affinity for HLA-E. We observed CD8+ T-cell proliferation to the majority of the 69 peptides tested in Mtb responsive adults as well as in BCG-vaccinated infants. CD8+ T-cells were cytotoxic against target-cells transfected with HLA-E only in the presence of specific peptide. These T cells were also able to lyse M. bovis BCG infected, but not control monocytes, suggesting recognition of antigens during mycobacterial infection. In addition, peptide induced CD8+ T-cells also displayed regulatory activity, since they inhibited T-cell proliferation. This regulatory activity was cell contact-dependent, and at least partly dependent on membrane-bound TGF-β. Our results significantly increase our understanding of the human immune response to Mtb by identification of CD8+ T-cell responses to novel HLA-E binding peptides of Mtb, which have cytotoxic as well as immunoregulatory activity.
- ItemOpen AccessNK-, NKT-and CD8-derived IFNγ drives myeloid cell activation and erythrophagocytosis, resulting in Trypanosomosis-associated acute anemia(Public Library of Science, 2015) Cnops, Jennifer; Trez, Carl De; Stijlemans, Benoit; Keirsse, Jiri; Kauffmann, Florence; Barkhuizen, Mark; Keeton, Roanne; Boon, Louis; Brombacher, Frank; Magez, StefanAfrican trypanosomes are the causative agents of Human African Trypanosomosis (HAT/Sleeping Sickness) and Animal African Trypanosomosis (AAT/Nagana). A common hallmark of African trypanosome infections is inflammation. In murine trypanosomosis, the onset of inflammation occurs rapidly after infection and is manifested by an influx of myeloid cells in both liver and spleen, accompanied by a burst of serum pro-inflammatory cytokines. Within 48 hours after reaching peak parasitemia, acute anemia develops and the percentage of red blood cells drops by 50%. Using a newly developed in vivo erythrophagocytosis assay, we recently demonstrated that activated cells of the myeloid phagocytic system display enhanced erythrophagocytosis causing acute anemia. Here, we aimed to elucidate the mechanism and immune pathway behind this phenomenon in a murine model for trypanosomosis. Results indicate that IFNγ plays a crucial role in the recruitment and activation of erythrophagocytic myeloid cells, as mice lacking the IFNγ receptor were partially protected against trypanosomosis-associated inflammation and acute anemia. NK and NKT cells were the earliest source of IFNγ during T. b. brucei infection. Later in infection, CD8+ and to a lesser extent CD4+ T cells become the main IFNγ producers. Cell depletion and transfer experiments indicated that during infection the absence of NK, NKT and CD8+ T cells, but not CD4+ T cells, resulted in a reduced anemic phenotype similar to trypanosome infected IFNγR-/- mice. Collectively, this study shows that NK, NKT and CD8+ T cell-derived IFNγ is a critical mediator in trypanosomosis-associated pathology, driving enhanced erythrophagocytosis by myeloid phagocytic cells and the induction of acute inflammation-associated anemia.
- ItemOpen AccessNo evidence for selection of HIV-1 with enhanced Gag-Protease or Nef function among breakthrough infections in the CAPRISA 004 tenofovir microbicide trial(Public Library of Science, 2013) Chopera, Denis R; Mann, Jaclyn K; Mwimanzi, Philip; Omarjee, Saleha; Kuang, Xiaomei T; Ndabambi, Nonkululeko; Goodier, Sarah; Martin, Eric; Naranbhai, Vivek; Karim, Salim AbdoolBACKGROUND: Use of antiretroviral-based microbicides for HIV-1 prophylaxis could introduce a transmission barrier that inadvertently facilitates the selection of fitter viral variants among incident infections. To investigate this, we assessed the in vitro function of gag-protease and nef sequences from participants who acquired HIV-1 during the CAPRISA 004 1% tenofovir microbicide gel trial. Methods and RESULTS: We isolated the earliest available gag-protease and nef gene sequences from 83 individuals and examined their in vitro function using recombinant viral replication capacity assays and surface protein downregulation assays, respectively. No major phylogenetic clustering and no significant differences in gag-protease or nef function were observed in participants who received tenofovir gel versus placebo gel prophylaxis. CONCLUSION: Results indicate that the partial protective effects of 1% tenofovir gel use in the CAPRISA 004 trial were not offset by selection of transmitted/early HIV-1 variants with enhanced Gag-Protease or Nef fitness.
- ItemOpen AccessPotent sensitisation of cancer cells to anticancer drugs by a quadruple mutant of the human deoxycytidine kinase(Public Library of Science, 2015) Coulibaly, Safiatou T; Rossolillo, Paola; Winter, Flore; Kretzschmar, Franziska K; Brayé, Mélanie; Martin, Darren P; Lener, Daniela; Negroni, MatteoIdentifying enzymes that, once introduced in cancer cells, lead to an increased efficiency of treatment constitutes an important goal for biomedical applications. Using an original procedure whereby mutant genes are generated based on the use of conditional lentivector genome mobilisation, we recently described, for the first time, the identification of a human deoxycytidine kinase (dCK) mutant (G12) that sensitises a panel of cancer cell lines to treatment with the dCK analogue gemcitabine. Here, starting from the G12 variant itself, we generated a new library and identified a mutant (M36) that triggers even greater sensitisation to gemcitabine than G12. With respect to G12, M36 presents an additional mutation located in the region that constitutes the interface of the dCK dimer. The simple presence of this mutation halves both the IC50 and the proportion of residual cells resistant to the treatment. Furthermore, the use of vectors with self-inactivating LTRs leads to an increased sensitivity to treatment, a result compatible with a relief of the transcriptional interference exerted by the U3 promoter on the internal promoter that drives the expression of M36. Importantly, a remarkable effect is also observed in treatments with the anticancer compound cytarabine (AraC), for which a 10,000 fold decrease in IC50 occurred. By triggering the sensitisation of various cancer cell types with poor prognosis to two commonly used anticancer compounds M36 is a promising candidate for suicide gene approaches.
- ItemOpen AccessPrevalence and trends of Staphylococcus aureus Bacteraemia in hospitalized patients in South Africa, 2010 to 2012: laboratory-based surveillance mapping of antimicrobial resistance and molecular epidemiology(Public Library of Science, 2015) Perovic, Olga; Iyaloo, Samantha; Kularatne, Ranmini; Lowman, Warren; Bosman, Noma; Wadula, Jeannette; Seetharam, Sharona; Duse, Adriano; Mbelle, Nontombi; Bamford, Colleen; Dawood, Halima; Mahabeer, Yesholata; Bhola, Prathna; Abrahams, Shareef; Singh-Moodley, AshikaIntroduction We aimed to obtain an in-depth understanding on recent antimicrobial resistance trends and molecular epidemiology trends of S . aureus bacteraemia (SAB). METHODS: Thirteen academic centres in South Africa were included from June 2010 until July 2012. S . aureus susceptibility testing was performed on the MicroScan Walkaway. Real-time PCR using the LightCycler 480 II was done for mec A and nuc . SCC mec and spa -typing were finalized with conventional PCR. We selected one isolate per common spa type per province for multilocus sequence typing (MLST). RESULTS: S . aureus from 2709 patients were included, and 1231 (46%) were resistant to methicillin, with a significant decline over the three-year period (p-value = 0.003). Geographical distribution of MRSA was significantly higher in Gauteng compared to the other provinces (P<0.001). Children <5 years were significantly associated with MRSA with higher rates compared to all other age groups (P = 0.01). The most prevalent SCC mec type was SCC mec type III (531 [41%]) followed by type IV (402 [31%]). Spa -typing discovered 47 different spa -types. The five (87%) most common spa- types were t037, t1257, t045, t064 and t012. Based on MLST, the commonest was ST612 clonal complex (CC8) (n = 7) followed by ST5 (CC5) (n = 4), ST36 (CC30) (n = 4) and ST239 (CC8) (n = 3). CONCLUSIONS: MRSA rate is high in South Africa. Majority of the isolates were classified as SCC mec type III (41%) and type IV (31%), which are typically associated with hospital and community- acquired infections, respectively. Overall, this study reveals the presence of a variety of hospital-acquired MRSA clones in South Africa dominance of few clones, spa 037 and 1257. Monitoring trends in resistance and molecular typing is recommended to detect changing epidemiological trends in AMR patterns of SAB.
- ItemOpen AccessSB225002 induces cell death and cell cycle arrest in acute lymphoblastic leukemia cells through the activation of GLIPR1(Public Library of Science, 2015) De Vasconcellos, Jaíra Ferreira; Laranjeira, Angelo Brunelli Albertoni; Leal, Paulo C; Bhasin, Manoj K; Zenatti, Priscila Pini; Nunes, Ricardo J; Yunes, Rosendo A; Nowill, Alexandre E; Libermann, Towia A; Zerbini, Luiz Fernando; Yunes, José AndrésAcute Lymphoblastic Leukemia (ALL) is the most frequent childhood malignancy. In the effort to find new anti-leukemic agents, we evaluated the small drug SB225002 (N-(2-hydroxy-4-nitrophenyl)-N'-(2-bromophenyl)urea). Although initially described as a selective antagonist of CXCR2, later studies have identified other cellular targets for SB225002, with potential medicinal use in cancer. We found that SB225002 has a significant pro-apoptotic effect against both B- and T-ALL cell lines. Cell cycle analysis demonstrated that treatment with SB225002 induces G2-M cell cycle arrest. Transcriptional profiling revealed that SB225002-mediated apoptosis triggered a transcriptional program typical of tubulin binding agents. Network analysis revealed the activation of genes linked to the JUN and p53 pathways and inhibition of genes linked to the TNF pathway. Early cellular effects activated by SB225002 included the up-regulation of GLIPR1 , a p53-target gene shown to have pro-apoptotic activities in prostate and bladder cancer. Silencing of GLIPR1 in B- and T-ALL cell lines resulted in increased resistance to SB225002. Although SB225002 promoted ROS increase in ALL cells, antioxidant N-Acetyl Cysteine pre-treatment only modestly attenuated cell death, implying that the pro-apoptotic effects of SB225002 are not exclusively mediated by ROS. Moreover, GLIPR1 silencing resulted in increased ROS levels both in untreated and SB225002-treated cells. In conclusion, SB225002 induces cell cycle arrest and apoptosis in different B- and T-ALL cell lines. Inhibition of tubulin function with concurrent activation of the p53 pathway, in particular, its downstream target GLIPR1 , seems to underlie the anti-leukemic effect of SB225002.
- ItemOpen AccessThe use of directed evolution to create a stable and immunogenic recombinant BCG expressing a modified HIV-1 Gag antigen(Public Library of Science, 2014) Chapman, Rosamund; Bourn, William R; Shephard, Enid; Stutz, Helen; Douglass, Nicola; Mgwebi, Thandi; Meyers, Ann; Chin'ombe, Nyasha; Williamson, Anna-LiseNumerous features make Mycobacterium bovis BCG an attractive vaccine vector for HIV. It has a good safety profile, it elicits long-lasting cellular immune responses and in addition manufacturing costs are affordable. Despite these advantages it is often difficult to express viral antigens in BCG, which results in genetic instability and low immunogenicity. The aim of this study was to generate stable recombinant BCG (rBCG) that express high levels of HIV antigens, by modification of the HIV genes. A directed evolution process was applied to recombinant mycobacteria that expressed HIV-1 Gag fused to the green fluorescent protein (GFP). Higher growth rates and increased GFP expression were selected for. Through this process a modified Gag antigen was selected. Recombinant BCG that expressed the modified Gag (BCG[pWB106] and BCG[pWB206]) were more stable, produced higher levels of antigen and grew faster than those that expressed the unmodified Gag (BCG[pWB105]). The recombinant BCG that expressed the modified HIV-1 Gag induced 2 to 3 fold higher levels of Gag-specific CD4 T cells than those expressing the unmodified Gag (BCG[pWB105]). Mice primed with 10 7 CFU BCG[pWB206] and then boosted with MVA-Gag developed Gag-specific CD8 T cells with a frequency of 1343±17 SFU/10 6 splenocytes, 16 fold greater than the response induced with MVA-Gag alone. Levels of Gag-specific CD4 T cells were approximately 5 fold higher in mice primed with BCG[pWB206] and boosted with MVA-Gag than in those receiving the MVA-Gag boost alone. In addition mice vaccinated with BCG[pWB206] were protected from a surrogate vaccinia virus challenge.
- ItemOpen AccessWhole genome sequencing reveals complex evolution patterns of multidrug-resistant Mycobacterium tuberculosis Beijing strains in patients(Public Library of Science, 2013) Merker, Matthias; Kohl, Thomas A; Roetzer, Andreas; Truebe, Leona; Richter, Elvira; Rüsch-Gerdes, Sabine; Fattorini, Lanfranco; Oggioni, Marco R; Cox, Helen; Varaine, FrancisMultidrug-resistant (MDR) Mycobacterium tuberculosis complex (MTBC) strains represent a major threat for tuberculosis (TB) control. Treatment of MDR-TB patients is long and less effective, resulting in a significant number of treatment failures. The development of further resistances leads to extensively drug-resistant (XDR) variants. However, data on the individual reasons for treatment failure, e.g. an induced mutational burst, and on the evolution of bacteria in the patient are only sparsely available. To address this question, we investigated the intra-patient evolution of serial MTBC isolates obtained from three MDR-TB patients undergoing longitudinal treatment, finally leading to XDR-TB. Sequential isolates displayed identical IS 6110 fingerprint patterns, suggesting the absence of exogenous re-infection. We utilized whole genome sequencing (WGS) to screen for variations in three isolates from Patient A and four isolates from Patient B and C, respectively. Acquired polymorphisms were subsequently validated in up to 15 serial isolates by Sanger sequencing. We determined eight (Patient A) and nine (Patient B) polymorphisms, which occurred in a stepwise manner during the course of the therapy and were linked to resistance or a potential compensatory mechanism. For both patients, our analysis revealed the long-term co-existence of clonal subpopulations that displayed different drug resistance allele combinations. Out of these, the most resistant clone was fixed in the population. In contrast, baseline and follow-up isolates of Patient C were distinguished each by eleven unique polymorphisms, indicating an exogenous re-infection with an XDR strain not detected by IS 6110 RFLP typing. Our study demonstrates that intra-patient microevolution of MDR-MTBC strains under longitudinal treatment is more complex than previously anticipated. However, a mutator phenotype was not detected. The presence of different subpopulations might confound phenotypic and molecular drug resistance tests. Furthermore, high resolution WGS analysis is necessary to accurately detect exogenous re-infection as classical genotyping lacks discriminatory power in high incidence settings.
- ItemOpen AccessWithin-host dynamics of the emergence of tomato yellow leaf curl virus recombinants(Public Library of Science, 2013) Urbino, Cica; Gutiérrez, Serafin; Antolik, Anna; Bouazza, Nabila; Doumayrou, Juliette; Granier, Martine; Martin, Darren P; Peterschmitt, MichelTomato yellow leaf curl virus (TYLCV) is a highly damaging begomovirus native to the Middle East. TYLCV has recently spread worldwide, recombining with other begomoviruses. Recent analysis of mixed infections between TYLCV and Tomato leaf curl Comoros begomovirus (ToLCKMV) has shown that, although natural selection preserves certain co-evolved intra-genomic interactions, numerous and diverse recombinants are produced at 120 days post-inoculation (dpi), and recombinant populations from different tomato plants are very divergent. Here, we investigate the population dynamics that lead to such patterns in tomato plants co-infected with TYLCV and ToLCKMV either by agro-inoculation or using the natural whitefly vector Bemisia tabaci . We monitored the frequency of parental and recombinant genotypes independently in 35 plants between 18 and 330 dpi and identified 177 recombinants isolated at different times. Recombinants were detected from 18 dpi and their frequency increased over time to reach about 50% at 150 dpi regardless of the inoculation method. The distribution of breakpoints detected on 96 fully sequenced recombinants was consistent with a continuous generation of new recombinants as well as random and deterministic effects in their maintenance. A severe population bottleneck of around 10 genomes was estimated during early systemic infection-a phenomenon that could account partially for the heterogeneity in recombinant patterns observed among plants. The detection of the same recombinant genome in six of the thirteen plants analysed beyond 30 dpi supported the influence of selection on observed recombination patterns. Moreover, a highly virulent recombinant genotype dominating virus populations within one plant has, apparently, the potential to be maintained in the natural population according to its infectivity, within-host accumulation, and transmission efficiency - all of which were similar or intermediate to those of the parent genotypes. Our results anticipate the outcomes of natural encounters between TYLCV and ToLCKMV.