Potential of thermophilic bioleaching, effect of temperature on the process performance
Master Thesis
1997
Permanent link to this Item
Authors
Supervisors
Journal Title
Link to Journal
Journal ISSN
Volume Title
Publisher
Publisher
University of Cape Town
License
Series
Abstract
Bioleaching is a biohydrometallurgical process whereby mineral sulphides are metabolically oxidised by microorganisms, releasing precious metals encapsulated in them. This pre-treatment is based on the action of microorganisms affecting oxidation of reduced sulphur species and ferrous iron to sulphate and ferric iron respectively. Conventionally Thiobacillus ferrooxidans, Thiobacillus thiooxidans and Leptospirillum ferrooxidans are implemented in this process in the region of 40-45°C and pH 1.8. A high temperature (65- 800C) process, utiltising thermophilic archaea such as Sulfolobus spp. can be considered as an alternative to current bioleaching practice. Literature indicates that there is an overall increase, 6 fold on average, in the rate of leaching due to the use thermophilic organisms. Bioleaching. involves nutrient transfer to microorganisms and interactions between several ionic species, including iron and sulphate. Thus, it is necessary to investigate the effect of the increased temperature on the gas-liquid mass transfer as well as ionic speciation of the system. Hence, the objectives of the present research were established as follows: to elucidate the effect of temperature on mass transfer from a theoretical point of view to establish whether ionic speciation is a contributing factor in thermophilic bioleaching to develop a generic and flexible means of representing ionic species
Description
Includes bibliographies.
Keywords
Reference:
Archer, K. 1997. Potential of thermophilic bioleaching, effect of temperature on the process performance. University of Cape Town.