The internal performance of iterative feedback tuning

Master Thesis

2008

Permanent link to this Item
Authors
Supervisors
Journal Title
Link to Journal
Journal ISSN
Volume Title
Publisher
Publisher

University of Cape Town

License
Series
Abstract
Under certain conditions Iterative Feedback Tuning (IFT) may produce a controller that cancels the poles of the process and as a result can give a closed loop that has poor internal performance. The disadvantage of this is that the closed loop will have poor input disturbance rejection. A solution for ensuring that IFT does not have poor internal performance is to make sure that the disturbance rejection is adequate. However an adequate input disturbance may lead to other undesirable dynamics in the closed loop performance. These are such as overshoot in the response for setpoint tracking and that for output disturbance rejection. On the other hand the advantage of pole shifting is that for a one degree of freedom control structure all the characteristic equations of the loop transfer functions will be the same. Four methods are proposed for avoiding pole-zero cancellation by concentrating on the input disturbance. These methods are using: a model for input disturbance rejection, time-weighted IFT for disturbance rejection, a setpoint-tracking model with overshoot and approximate pole placement IFT. Approximate pole placement IFT was chosen as the best method. The reason is that the dynamics of the closed loop can be specified with the choice of characteristic equation. This method was then investigated further to establish its feasibility on a physical system. After the evaluation of this method, it was applied on a DC motor for speed control to show that is viable in practice. Multiple experiments were done to show that this method does not produce a controller that cancels the process poles, confirming it as a good solution to prevent poor internal performance.
Description

Includes bibliographical references (p. 113-115).

Reference:

Collections