Links between the Seychelles-Chagos thermocline ridge and large scale climate modes and primary productivity; and the annual cycle of chlorophyll-a
Master Thesis
2014
Permanent link to this Item
Authors
Journal Title
Link to Journal
Journal ISSN
Volume Title
Publisher
Publisher
University of Cape Town
Department
Faculty
License
Series
Abstract
The Seychelles-Chagos Thermocline Ridge (SCTR) is a region of upwelling present at 55°E- 90°E and 5°S-12°S in the southwest tropical Indian Ocean. It is a region of strong ocean-atmosphere interactions due to the high variability of the thermocline depth caused by the local Ekman pumping. Sea-viewing Wide Field-of-view Sensor (SeaWiFS) has shown high variability of surface chlorophyll-a (SChl-a) in the SCTR region. The Indian Ocean Dipole (IOD) and El Niño Southern Oscillation (ENSO) have also driven significant interannual variation of the depth of 20°C isotherm (D20) and SChl-a in the southern tropical Indian Ocean. A 50-years hindcast (RUN58-07) from a coupled bio-physical model was used to study the SChl-a concentration on an annual time scale and the interannual variability of D20 and SChla in the SCTR in response to IOD and ENSO events. Initial analysis revealed a high overestimation of SChl-a in the 50-year run. Therefore, a 44-years hindcast (RUN58-01) of the same coupled model was taken into consideration. Comparisons with observations show that the RUN58-07 reproduces the D20 and SSH better than the RUN58-01 but the RUN58-01 shows better agreement with SeaWiFS. Results reveal that the SCTR exhibits an annual cycle of SChl-a concentration, with a peak in austral winter (June-August) due to the strong southeasterlies, increasing wind stirring and induced upwelling. Vertical sections of the SCTR also indicate that an increase in surface concentration in austral winter is compensated by a decrease in subsurface phytoplankton blooms. Composite figures show that IOD events exhibit a greater influence on the subsurface and surface variability in the SCTR region. The IOD deepens and shoals the D20 in the SCTR and eastern Indian Ocean respectively whereas ENSO displays a weaker and less-extensive influence on the D20. The spatial distribution of SChl-a in the Indian Ocean is completely disrupted by IOD during which the SCTR becomes oligotrophic whereas the eastern Indian Ocean becomes highly productive. ENSO, however, does not display any significant biogeochemical signature in the SCTR. This study should improve our understanding of the interannual variability of the thermocline depth and chlorophyll-a in the SCTR region; and for the optimization of the management of fishery resources and marine ecosystems.
Description
Includes bibliographical references.
Keywords
Reference:
Dilmahamod, A. 2014. Links between the Seychelles-Chagos thermocline ridge and large scale climate modes and primary productivity; and the annual cycle of chlorophyll-a. University of Cape Town.