Quantifying morphology of nickel crystals.

Journal Article

2001

Permanent link to this Item
Authors
Journal Title

The Journal of The South African Institute of Mining and Metallurgy

Journal ISSN
Volume Title
Publisher

The Southern African Institute of Mining and Metallurgy

Publisher

University of Cape Town

Series
Abstract
Particle morphology is a term that is used to describe the overall external shape and appearance of particulate solids. From the physical point of view, a precipitated solid is characterized primarily by the size and morphology of the particles (Sohnel and Garside, 1992). If the morphology of the crystal structures is to be related to the processing conditions, then the morphologies need to be quantified in some way. This can be achieved by using surface area measurements as well as fractal dimensions. The key idea is that rugged and indeterminate systems can be described by using a fractional number that describes the ruggedness of the system (Kaye, 1989). In other words, when the complexity of a structure, such as an agglomerate, increases with increasing magnification, it is useful to employ fractal dimensions to describe the structure. Fractal geometry proposes that, instead of attempting to measure the length of an irregular boundary, the rate at which the length of the boundary approaches infinity with increasing resolution should be calculated. Cross-sectional profiles of rugged particles can thus be quantified using the fractal dimension, and a measurement of the ruggedness of the morphology obtained. One of the additional uses of measuring the fractal dimension is that the measured value can be related to the physical properties and formation characteristics of the particle (Kaye and Trottier, 1995).The morphology of nickel crystals was quantified with fractal dimension calculations of particle cross-sections. Particle crosssections were obtained by mounting the particles in resin and polishing back. These were then photographed using Scanning Electron Microscopy and the resulting profiles analysed using the structured walk technique.
Description

Reference:

Collections