Performance analysis of text classification algorithms for PubMed articles
Master Thesis
2021
Permanent link to this Item
Authors
Journal Title
Link to Journal
Journal ISSN
Volume Title
Publisher
Publisher
Department
Faculty
License
Series
Abstract
The Medical Subject Headings (MeSH) thesaurus is a controlled vocabulary developed by the US National Library of Medicine (NLM) for indexing articles in Pubmed Central (PMC) archive. The annotation process is a complex and time-consuming task relying on subjective manual assignment of MeSH concepts. Automating such tasks with machine learning may provide a more efficient way of organizing biomedical literature in a less ambiguous way. This research provides a case study which compares the performance of several different machine learning algorithms (Topic Modelling, Random Forest, Logistic Regression, Support Vector Classifiers, Multinomial Naive Bayes, Convolutional Neural Network and Long Short-Term Memory (LSTM)) in reproducing manually assigned MeSH annotations. Records for this study were retrieved from Pubmed using the E-utilities API to the Entrez system of databases at NCBI (National Centre for Biotechnology Information). The MeSH vocabulary is organised in a hierarchical structure and article abstracts labelled with a single MeSH term from the top second two layers were selected for training the machine learning models. Various strategies for text multiclass classification were considered. One was a Chi-square test for feature selection which identified words relevant to each MeSH label. The second approach used Named Entity Recognition (NER) to extract entities from the unstructured text and another approach relied on word embeddings able to capture latent knowledge from literature. At the start of the study text was tokenised using the Term Frequency Inverse Document Frequency (Tf-idf) technique and topic modelling performed with the objective to ascertain the correlation between assigned topics (unsupervised learning task) and MeSH terms in PubMed. Findings revealed the degree of coupling was low although significant. Of all of the classifier models trained, logistic regression on Tf-idf vectorised entities achieved highest accuracy. Performance varied across the different MeSH categories. In conclusion automated curation of articles by abstract may be possible for those target classes classified reliably and reproducibly.
Description
Keywords
Reference:
Savvi, S. 2021. Performance analysis of text classification algorithms for PubMed articles. . ,Faculty of Science ,Department of Statistical Sciences. http://hdl.handle.net/11427/36059