A mathematical model of a high sulphate wastewater, anaerobic treatment system
Master Thesis
1999
Permanent link to this Item
Authors
Supervisors
Journal Title
Link to Journal
Journal ISSN
Volume Title
Publisher
Publisher
University of Cape Town
Department
License
Series
Abstract
High sulphate wastewaters, originating from industrial activity or from the biological oxidation of sulphide ores (acid mine drainage), cannot be discharged into the environment untreated. Apart from the high sulphate levels, these waters may be very acidic and have high dissolved heavy metal concentrations. One promising treatment technology is biological sulphate reduction in anaerobic reactors. During anaerobic treatment, sulphate is reduced to sulphide and alkalinity is generated, raising the pH and precipitating many of the heavy metals. The process requires a carbon source as an electron donor. This may be simple organics such as ethanol or volatile fatty acids, which are directly utilized by the sulphate reducing bacteria, or complex organics such as sewage sludge which must first undergo solubilization and fermentation by a different microbial group. As an aid to the design and operation of this treatment process, a mathematical model describing an anaerobic digester treating high sulphate waste waters has been developed. Apart from sulphate reduction, the model includes those reactions which occur either prior to sulphate reduction, or in competition with it. These include hydrolysis of solid substrates, acidogenesis, beta oxidation of long chain fatty acids, acetogenesis and methanogenesis. By incorporating terms for these reactions, the model is able to simulate sulphate reduction using a wide range of carbon sources. A comprehensive literature survey of the kinetic parameters for the above reactions was undertaken. Apart from the Monod equation describing substrate uptake the kinetic expressions used in the model also includes terms for: unionized fatty acid inhibition; unionized or total sulphide inhibition; hydrogen inhibition and hydrogen product regulation where appropriate; pH inhibition; and dual substrate uptake where appropriate. Acid/base equilibrium chemistry has been included in order to predict the pH and unionized component concentrations (needed for calculating inhibition). The weak acids, H₂CO₃, H₂S, a number of SCFAs, NH₃, and their ions, as well as the strongly dissociating sulphates Na₂SO₄ and H₂SO₄ are included. An activity based model was used, with the activity coefficients calculated using Debye-Hilckle theory. The mass transfer rates of hydrogen, methane, carbon dioxide and hydrogen sulphide from the liquid to the vapour phase are also included. A final aspect of the model is the equations describing the reactor geometry. A number of different reactors may be simulated, including a dynamic batch, steady state CSTR and dynamic CSTR. By separating the hydraulic and solids residence times, high rate reactors such as UASB and packed bed reactors may also be simulated. The model has been used to successfully predict the dynamic and steady state behaviour of a number of different reactor types, utilizing both simple and complex carbon sources.
Description
Includes bibliographic references.
Keywords
Reference:
Knobel, A. 1999. A mathematical model of a high sulphate wastewater, anaerobic treatment system. University of Cape Town.