Reinforcement learning for telescope optimisation

Master Thesis

2019

Permanent link to this Item
Authors
Supervisors
Journal Title
Link to Journal
Journal ISSN
Volume Title
Publisher
Publisher
License
Series
Abstract
Reinforcement learning is a relatively new and unexplored branch of machine learning with a wide variety of applications. This study investigates reinforcement learning and provides an overview of its application to a variety of different problems. We then explore the possible use of reinforcement learning for telescope target selection and scheduling in astronomy with the hope of effectively mimicking the choices made by professional astronomers. This is relevant as next-generation astronomy surveys will require near realtime decision making in response to high-speed transient discoveries. We experiment with and apply some of the leading approaches in reinforcement learning to simplified models of the target selection problem. We find that the methods used in this study show promise but do not generalise well. Hence while there are indications that reinforcement learning algorithms could work, more sophisticated algorithms and simulations are needed.
Description

Reference:

Collections