Abrasion-corrosion and stress corrosion resistance of a 9Cr-2Ni-0.7Mo steel in simulated mine water

Master Thesis


Permanent link to this Item
Journal Title
Link to Journal
Journal ISSN
Volume Title

University of Cape Town

The locally (RSA) developed 9Cr-2Ni-0.7Mo steel designated 927 formed the subject of this study. Its abrasion-corrosion and stress corrosion performances were assessed in laboratory tests simulating the underground environment in South African gold mines. The results indicate that the alloy performs favourably in abrasive-corrosive applications, outperforming several other higher chromium containing steels which have been designed for the purpose. The alloy is also highly resistant to sec at free corrosion potential in simulated mine water. The good abrasion-corrosion resistance is attributed to the adequate corrosion resistance of the alloy acting in conjunction with the favourable combination of strength and toughness afforded the alloy by its fine grain size and microduplex microstructure of martensite and interlath retained austenite. The production variables of plate thickness and prior cold working were found to exert negligible influence on corrosion-abrasion resistance. This is ascribed to the small influence of these processes on the hardness and associated mechanical properties due the inherent low work hardening ability of the alloy. Slow strain rate (SSR) stress corrosion cracking tests were performed on the alloy in four microstructural conditions viz. as-rolled, tempered, welded and post weld heat treated. The material showed an immunity to sec in all the microstructural conditions for tests conducted at open circuit potential. This apparent immunity is attributed to the difficulty in initiating sec by pitting on the plain specimens over the relatively short test durations. Polarisation to extreme cathodic potentials (-1200m V) resulted in hydrogen embrittlement of this high strength alloy with failure predominantly along prior austenite grain boundaries. Anodic potentials in the excess of OmV induced tunnel-like corrosion pitting attack. Fractographical evidence of sec at the base of these pits indicates the development of the conditions necessary for sec within the pit confines. This is cited as evidence in support of the hypothesis of sec initiation difficulty.

Bibliography: pages 101-109.