Online Non-linear Prediction of Financial Time Series Patterns
Master Thesis
2020
Permanent link to this Item
Authors
Supervisors
Journal Title
Link to Journal
Journal ISSN
Volume Title
Publisher
Publisher
Department
Faculty
License
Series
Abstract
We consider a mechanistic non-linear machine learning approach to learning signals in financial time series data. A modularised and decoupled algorithm framework is established and is proven on daily sampled closing time-series data for JSE equity markets. The input patterns are based on input data vectors of data windows preprocessed into a sequence of daily, weekly and monthly or quarterly sampled feature measurement changes (log feature fluctuations). The data processing is split into a batch processed step where features are learnt using a Stacked AutoEncoder (SAE) via unsupervised learning, and then both batch and online supervised learning are carried out on Feedforward Neural Networks (FNNs) using these features. The FNN output is a point prediction of measured time-series feature fluctuations (log differenced data) in the future (ex-post). Weight initializations for these networks are implemented with restricted Boltzmann machine pretraining, and variance based initializations. The validity of the FNN backtest results are shown under a rigorous assessment of backtest overfitting using both Combinatorially Symmetrical Cross Validation and Probabilistic and Deflated Sharpe Ratios. Results are further used to develop a view on the phenomenology of financial markets and the value of complex historical data under unstable dynamics.
Description
Keywords
Reference:
da Costa, J. 2020. Online Non-linear Prediction of Financial Time Series Patterns. . ,Faculty of Science ,Department of Statistical Sciences. http://hdl.handle.net/11427/32221