Investigation into the use of the Microsoft Kinect and the Hough transform for mobile robotics
Master Thesis
2014
Permanent link to this Item
Authors
Journal Title
Link to Journal
Journal ISSN
Volume Title
Publisher
Publisher
University of Cape Town
Department
License
Series
Abstract
The Microsoft Kinect sensor is a low cost RGB-D sensor. In this dissertation, its calibration is fully investigated and then these parameters are compared to the parameters given by Microsoft and OpenNI. The parameters found were found to be different to those given by Microsoft and OpenNI therefore, every Kinect should be fully calibrated. The transformation from the raw data to a point cloud is also investigated. Then, the Hough transform is presented in its 2-dimensional form. The Hough transform is a line extraction algorithm which uses a voting system. It is then compared to the Split-and-Merge algorithm using laser range _nder data. The Hough transform is found to compare well to the Split-and-Merge in 2 dimensions. Finally, the Hough transform is extended into 3-dimensions for use with the Kinect sensor. It was found that pre-processing of the Kinect data was necessary to reduce the number of points input into the Hough transform. Three edge detectors are used - the LoG, Canny and Sobel edge detectors. These were compared, and the Sobel detector was found to be the best. The _nal process was then used in multiple ways - _rst to determine its speed. Its accuracy was then investigated. It was found that the planes extracted were very inaccurate, and therefore not suitable for obstacle avoidance in mobile robotics. The suitability of the process for SLAM was also investigated. It was found to be unsuitable, as planar environments did not have distinct features which could be tracked, whilst the complex environment was not planar, and therefore the Hough transform would not work.
Description
Includes bibliographical references.
Keywords
Reference:
O'Regan, K. 2014. Investigation into the use of the Microsoft Kinect and the Hough transform for mobile robotics. University of Cape Town.