Predicting social unrest events in South Africa using LSTM neural networks

Master Thesis

2021

Permanent link to this Item
Authors
Supervisors
Journal Title
Link to Journal
Journal ISSN
Volume Title
Publisher
Publisher
License
Series
Abstract
This thesis demonstrates an approach to predict the count of social unrest events in South Africa. A comparison is made between traditional forecasting approaches and neural networks; the traditional forecast method selected being the Autoregressive Integrated Moving Average (ARIMA model). The type of neural network implemented was the Long Short-Term Memory (LSTM) neural network. The basic theoretical concepts of ARIMA and LSTM neural networks are explained and subsequently, the patterns of the social unrest time series were analysed using time series exploratory techniques. The social unrest time series contained a significant number of irregular fluctuations with a non-linear trend. The structure of the social unrest time series suggested that traditional linear approaches would fail to model the non-linear behaviour of the time series. This thesis confirms this finding. Twelve experiments were conducted, and in these experiments, features, scaling procedures and model configurations are varied (i.e. univariate and multivariate models). Multivariate LSTM achieved the lowest forecast errors and performance improved as more explanatory features were introduced. The ARIMA model's performance deteriorated with added complexity and the univariate ARIMA produced lower forecast errors compared to the multivariate ARIMA. In conclusion, it can be claimed that multivariate LSTM neural networks are useful for predicting social unrest events.
Description

Reference:

Collections