HIV evolution in early infection: selection pressures, patterns of insertion and deletion, and the impact of APOBEC

Author Summary HIV is a rapidly evolving virus, displaying enormous genetic diversity between and even within infected individuals, with implications for vaccine design and drug treatment. Yet, recent research has shown that most new infections result from transmission of a single virus resulting in a homogeneous viral population in early infection. The process of diversification from the transmitted virus provides information about the selection pressures experienced by the virus during the establishment of a new infection. In this paper, we studied early diversification of the envelope gene in a cohort of 81 subjects acutely infected with HIV-1 subtype B and found evidence of adaptive evolution, with a proportion of sites that tended to diversify more rapidly than expected under a model of neutral evolution. Several of these rapidly diversifying sites facilitate escape from early cytotoxic immune responses. Interestingly, hypermutation of the virus, brought about by host proteins as a strategy to restrict infection, appeared to be associated with early immune escape. In addition to single base substitutions, insertions and deletions are an important aspect of HIV evolution. We show that insertion and deletion mutations occur evenly across the gene, but are preferentially fixed in the variable loop regions.