Five years of antimalarial resistance marker surveillance in Gaza Province, Mozambique, following artemisinin-based combination therapy roll out
Journal Article
2011
Permanent link to this Item
Authors
Journal Title
PLoS One
Link to Journal
Journal ISSN
Volume Title
Publisher
Public Library of Science
Publisher
University of Cape Town
Department
Faculty
Series
Abstract
Antimalarial drug resistance is a major obstacle to malaria control and eventual elimination. The routine surveillance for molecular marker of resistance is an efficient way to assess drug efficacy, which remains feasible in areas where malaria control interventions have succeeded in substantially reducing malaria transmission. Community based asexual parasite prevalence surveys were conducted annually in sentinel sites in Gaza Province, Mozambique from 2006 until 2010, before, during and after antimalarial policy changes to artesunate plus sulfadoxine-pyrimethamine in 2006 and to artemether-lumefantrine in 2008. Genetic analysis of dhfr , dhps , crt , and mdr1 resistant genes was conducted on 3 331 (14.4%) Plasmodium falciparum PCR positive samples collected over the study period from 23 229 children aged 2 to 15 years. The quintuple dhfr/dhps mutation associated with sulfadoxine-pyrimethamine resistance increased from 56.2% at baseline to 75.8% by 2010. At baseline the crt 76T and mdr1 86Y mutants were approaching fixation, 96.1% and 74.7%, respectively. Following the deployment of artemisinin-based combination therapy, prevalence of both these chloroquine-resistance markers began declining, reaching 32.4% and 30.9%, respectively, by 2010. All samples analysed over the 5-year period possessed a single copy of the mdr1 gene. The high and increasing prevalence of the quintuple mutation supports the change in drug policy from artesunate plus sulfadoxine-pyrimethamine to artemether-lumefantrine in Mozambique. As chloroquine related drug pressure decreased in the region, so did the molecular markers associated with chloroquine resistance ( crt 76T and mdr1 86Y). However, this reversion to the wild-type mdr186N predisposes parasites towards developing lumefantrine resistance. Close monitoring of artemether-lumefantrine efficacy is therefore essential, particularly given the high drug pressure within the region where most countries now use artemether-lumefantrine as first line treatment.
Description
Reference:
Raman, J., Mauff, K., Muianga, P., Mussa, A., Maharaj, R., & Barnes, K. I. (2011). Five years of antimalarial resistance marker surveillance in Gaza Province, Mozambique, following artemisinin-based combination therapy roll out. PLoS One, 6(10), e25992. doi:10.1371/journal.pone.0025992