Parameter Estimation for Stable Distributions with Application to Commodity Futures Log-Returns

dc.contributor.authorKateregga, Michael
dc.contributor.authorMataramvura, Sure
dc.contributor.authorTaylor, David
dc.date.accessioned2017-09-13T07:13:03Z
dc.date.available2017-05-02
dc.date.available2017-09-13T07:13:03Z
dc.date.issued2017-05-02
dc.description.abstractThis paper explores the theory behind the rich and robust family of α-stable distributions to estimate parameters from financial asset log-returns data. We discuss four-parameter estimation methods including the quantiles, logarithmic moments method, maximum likelihood (ML), and the empirical characteristics function (ECF) method. The contribution of the paper is two-fold: first, we discuss the above parametric approaches and investigate their performance through error analysis. Moreover, we argue that the ECF performs better than the ML over a wide range of shape parameter values, α including values closest to 0 and 2 and that the ECF has a better convergence rate than the ML. Secondly, we compare the t location-scale distribution to the general stable distribution and show that the former fails to capture skewness which might exist in the data. This is observed through applying the ECF to commodity futures log-returns data to obtain the skewness parameter.en_ZA
dc.identifier.apacitationKateregga, M., Mataramvura, S., & Taylor, D. (2017). Parameter Estimation for Stable Distributions with Application to Commodity Futures Log-Returns. <i>Cogent Economics and Finance</i>, http://hdl.handle.net/11427/25147en_ZA
dc.identifier.chicagocitationKateregga, Michael, Sure Mataramvura, and David Taylor "Parameter Estimation for Stable Distributions with Application to Commodity Futures Log-Returns." <i>Cogent Economics and Finance</i> (2017) http://hdl.handle.net/11427/25147en_ZA
dc.identifier.citationKateregga, M., Mataramvura, S., Taylor, D. 2017-05-02. Parameter Estimation for Stable Distributions with Application to Commodity Futures Log-Returns. Cogent Economics and Finance.en_ZA
dc.identifier.issn2332-2039en_ZA
dc.identifier.ris TY - Journal Article AU - Kateregga, Michael AU - Mataramvura, Sure AU - Taylor, David AB - This paper explores the theory behind the rich and robust family of α-stable distributions to estimate parameters from financial asset log-returns data. We discuss four-parameter estimation methods including the quantiles, logarithmic moments method, maximum likelihood (ML), and the empirical characteristics function (ECF) method. The contribution of the paper is two-fold: first, we discuss the above parametric approaches and investigate their performance through error analysis. Moreover, we argue that the ECF performs better than the ML over a wide range of shape parameter values, α including values closest to 0 and 2 and that the ECF has a better convergence rate than the ML. Secondly, we compare the t location-scale distribution to the general stable distribution and show that the former fails to capture skewness which might exist in the data. This is observed through applying the ECF to commodity futures log-returns data to obtain the skewness parameter. DA - 2017-05-02 DB - OpenUCT DP - University of Cape Town J1 - Cogent Economics and Finance LK - https://open.uct.ac.za PB - University of Cape Town PY - 2017 SM - 2332-2039 T1 - Parameter Estimation for Stable Distributions with Application to Commodity Futures Log-Returns TI - Parameter Estimation for Stable Distributions with Application to Commodity Futures Log-Returns UR - http://hdl.handle.net/11427/25147 ER - en_ZA
dc.identifier.urihttp://hdl.handle.net/11427/25147
dc.identifier.vancouvercitationKateregga M, Mataramvura S, Taylor D. Parameter Estimation for Stable Distributions with Application to Commodity Futures Log-Returns. Cogent Economics and Finance. 2017; http://hdl.handle.net/11427/25147.en_ZA
dc.languageengen_ZA
dc.publisherTaylor and Francisen_ZA
dc.publisher.departmentDepartment of Finance and Taxen_ZA
dc.publisher.facultyFaculty of Commerceen_ZA
dc.publisher.institutionUniversity of Cape Town
dc.rightsCreative Commons Attribution 4.0 International (CC BY 4.0)*
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/en_ZA
dc.sourceCogent Economics and Financeen_ZA
dc.source.urihttp://www.tandfonline.com/toc/oaef20/current
dc.titleParameter Estimation for Stable Distributions with Application to Commodity Futures Log-Returnsen_ZA
dc.typeJournal Articleen_ZA
uct.type.filetypeText
uct.type.filetypeImage
uct.type.publicationResearchen_ZA
uct.type.resourceArticleen_ZA
Files
Original bundle
Now showing 1 - 5 of 8
Loading...
Thumbnail Image
Name:
Kateregga_Article_2017.pdf
Size:
13.26 MB
Format:
Adobe Portable Document Format
Description:
Loading...
Thumbnail Image
Name:
Parameter_Estimation_for_Stable_Distributions.pdf
Size:
13.26 MB
Format:
Adobe Portable Document Format
Description:
Loading...
Thumbnail Image
Name:
Parameter_Estimation_for_Stable_Distributions.pdf
Size:
13.26 MB
Format:
Adobe Portable Document Format
Description:
Loading...
Thumbnail Image
Name:
Parameter_Estimation_for_Stable_Distributions.pdf
Size:
13.26 MB
Format:
Adobe Portable Document Format
Description:
Loading...
Thumbnail Image
Name:
Parameter_Estimation_for_Stable_Distributions.pdf
Size:
13.26 MB
Format:
Adobe Portable Document Format
Description:
License bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
1.72 KB
Format:
Item-specific license agreed upon to submission
Description:
Collections