Study of the TR Synchronization and Video Conversion Unit

dc.contributor.authorAbraham, Justin Kuruvillaen_ZA
dc.date.accessioned2015-10-06T13:59:08Z
dc.date.available2015-10-06T13:59:08Z
dc.date.issued2012en_ZA
dc.description.abstractThis dissertation describes the design and testing of a model of the Synchronization and Video Conversion Unit (SVCU), a subsystem of the tracking radar (TR) at Denel Overberg Test Range (OTR). The SVCU synchronizes all the radar sub-systems and also converts the returned RF target signals to digital numbers. The technology within the SVCU is outdated and spares are scarce if not unattainable. This study forms the first phase of the development of a new SVCU and will determine the specifications of the hardware needed to build the replacement. Models of the transmit and receive chain of the radar were first developed in SystemVueTM. A comprehensive literature review was then done, yielding an accurate model of the current SVCU. The radar model was run, with simulated target and scene parameters, and its output fed into the SVCU model. The output of the SVCU was then processed by a CFAR detector and gated tracking algorithms implemented in MathLang and Python. The simulated target was correctly identified in the range-Doppler plane. The tracking gates (used to measure range and Doppler) were then corrupted with jitter, rise- time and offsets. A statistical analysis was done on the effect of these impurities on the radar measurements. A new SVCU architecture, utilizing high speed ADCs and digital integrators, was then tested. The effects of non-linearities (DNL and INL) in the ADC and phase noise on the ADC sample clock on the radar measurements were analysed. The jitter on the transmit sync (TX), the ADC sample clock and tracking gates were found to be the most critical aspects of the SVCU. To meet the specified measurement accuracy of the radar, the root-sum-square of the jitter on these syncs (jitter budget) must not exceed 30 nanoseconds. A case study was then done to determine the jitter budget achievable in an FPGA-centric SVCU design. The study concluded that a jitter budget of 30 ns is achievable. Moreover, in an FPGA based design the jitter introduced by the interface sending the TX sync from the FPGA (SVCU) to the transmitter assembly will, almost entirely, determine the range accuracy of the TR. From these findings, a new SVCU, based on the RHINO board from the UCT RRSG, was recommended and the future work outlined.en_ZA
dc.identifier.apacitationAbraham, J. K. (2012). <i>Study of the TR Synchronization and Video Conversion Unit</i>. (Thesis). University of Cape Town ,Faculty of Engineering & the Built Environment ,Department of Electrical Engineering. Retrieved from http://hdl.handle.net/11427/14137en_ZA
dc.identifier.chicagocitationAbraham, Justin Kuruvilla. <i>"Study of the TR Synchronization and Video Conversion Unit."</i> Thesis., University of Cape Town ,Faculty of Engineering & the Built Environment ,Department of Electrical Engineering, 2012. http://hdl.handle.net/11427/14137en_ZA
dc.identifier.citationAbraham, J. 2012. Study of the TR Synchronization and Video Conversion Unit. University of Cape Town.en_ZA
dc.identifier.ris TY - Thesis / Dissertation AU - Abraham, Justin Kuruvilla AB - This dissertation describes the design and testing of a model of the Synchronization and Video Conversion Unit (SVCU), a subsystem of the tracking radar (TR) at Denel Overberg Test Range (OTR). The SVCU synchronizes all the radar sub-systems and also converts the returned RF target signals to digital numbers. The technology within the SVCU is outdated and spares are scarce if not unattainable. This study forms the first phase of the development of a new SVCU and will determine the specifications of the hardware needed to build the replacement. Models of the transmit and receive chain of the radar were first developed in SystemVueTM. A comprehensive literature review was then done, yielding an accurate model of the current SVCU. The radar model was run, with simulated target and scene parameters, and its output fed into the SVCU model. The output of the SVCU was then processed by a CFAR detector and gated tracking algorithms implemented in MathLang and Python. The simulated target was correctly identified in the range-Doppler plane. The tracking gates (used to measure range and Doppler) were then corrupted with jitter, rise- time and offsets. A statistical analysis was done on the effect of these impurities on the radar measurements. A new SVCU architecture, utilizing high speed ADCs and digital integrators, was then tested. The effects of non-linearities (DNL and INL) in the ADC and phase noise on the ADC sample clock on the radar measurements were analysed. The jitter on the transmit sync (TX), the ADC sample clock and tracking gates were found to be the most critical aspects of the SVCU. To meet the specified measurement accuracy of the radar, the root-sum-square of the jitter on these syncs (jitter budget) must not exceed 30 nanoseconds. A case study was then done to determine the jitter budget achievable in an FPGA-centric SVCU design. The study concluded that a jitter budget of 30 ns is achievable. Moreover, in an FPGA based design the jitter introduced by the interface sending the TX sync from the FPGA (SVCU) to the transmitter assembly will, almost entirely, determine the range accuracy of the TR. From these findings, a new SVCU, based on the RHINO board from the UCT RRSG, was recommended and the future work outlined. DA - 2012 DB - OpenUCT DP - University of Cape Town LK - https://open.uct.ac.za PB - University of Cape Town PY - 2012 T1 - Study of the TR Synchronization and Video Conversion Unit TI - Study of the TR Synchronization and Video Conversion Unit UR - http://hdl.handle.net/11427/14137 ER - en_ZA
dc.identifier.urihttp://hdl.handle.net/11427/14137
dc.identifier.vancouvercitationAbraham JK. Study of the TR Synchronization and Video Conversion Unit. [Thesis]. University of Cape Town ,Faculty of Engineering & the Built Environment ,Department of Electrical Engineering, 2012 [cited yyyy month dd]. Available from: http://hdl.handle.net/11427/14137en_ZA
dc.language.isoengen_ZA
dc.publisher.departmentDepartment of Electrical Engineeringen_ZA
dc.publisher.facultyFaculty of Engineering and the Built Environment
dc.publisher.institutionUniversity of Cape Town
dc.subject.otherElectrical Engineeringen_ZA
dc.titleStudy of the TR Synchronization and Video Conversion Uniten_ZA
dc.typeMaster Thesis
dc.type.qualificationlevelMasters
dc.type.qualificationnameMSc (Eng)en_ZA
uct.type.filetypeText
uct.type.filetypeImage
uct.type.publicationResearchen_ZA
uct.type.resourceThesisen_ZA
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
thesis_ebe_2012_abraham_justin_kuruvilla.pdf
Size:
3.95 MB
Format:
Adobe Portable Document Format
Description:
Collections