Optimal placement of phasor measurement units using the Advanced Matrix Manipulation algorithm

Master Thesis

2013

Permanent link to this Item
Authors
Journal Title
Link to Journal
Journal ISSN
Volume Title
Publisher
Publisher

University of Cape Town

License
Series
Abstract
This thesis investigates the problem of the Optimal Placement scheme of Phasor Measurement Units in electrical power systems for State Estimation to facilitate improved monitoring and control of the system parameters. The research work done for this thesis begins with review of Supervisory Control and Data Acquisition systems (SCADA). SCADA-based systems are currently employed for condition monitoring and control of industrial and utility electrical power systems. For utility power networks, the main problem with voltage and current phasor data captured by SCADA systems is that they are not synchronised with respect to each other in a present-time or Real-time framework. This implies that both magnitude and phase angle of the measured phasors tend to get affected by slow data flow provided by SCADA to the points of utilization and also by differences in time instants of data capture. These factors inhibit theefficiency and quality of the power system monitoring and control. “Phasor Measurement Unit” (PMU) is a relatively new technology that, when employed in power networks, offers real-time synchronised measurements of the voltages at buses and currents along the lines that connect them. This is accomplished by using a GPS based monitoring system which facilitates time synchronisation of measurements and unlike SCADA, makes the measured data available in Real-Time format. SCADA is not able to provide Real-time data due to the low speeds at which RTUs (Remote Terminal Units) provide data. Availability of time-stamped phasor measurements makes PMUs preferable for power system monitoring and control applications such as State Estimation, Instability Prediction Analysis, Real-time Monitoring of the system conditions, Islanding Detection, System Restoration and Bad Data Detection.
Description

Includes abstract.


Includes bibliographical references.

Reference:

Collections