Transients in the errorbox of GW190814

Master Thesis

2020

Permanent link to this Item
Authors
Supervisors
Journal Title
Link to Journal
Journal ISSN
Volume Title
Publisher
Publisher
License
Series
Abstract
We are now firmly in the era of multi-messenger astronomy. The detection of the first binary black hole (BBH) merger in GW150914 [1] opened up the era of gravitational wave astronomy, with a further 9 such mergers being detected during the first two observing runs (O1 and O2) of the LIGO Scientific and Virgo Collaborations (LVC). The first – and currently only – multi-messenger source was detected during O2 and was caused by the merger of two neutron stars in a binary system (BNS) [2]. The electromagnetic (EM) counterparts to GW170817 [3] were observed across the EM spectrum by numerous observing facilities, with implications across a vast range of scientific disciplines. Optical/nearinfrared observations demonstrated that the emission was due to a kilonova powered by the radioactive decay of r-process material produced during the merger. For the first time short gamma-ray bursts were convincingly linked to BNS mergers, as observed in GRB170817A [3]. The third LVC observing run (O3) began 2019 April 1 and concluded 2020 March 27. The signal from GW190425 [4] was likely caused by the coalescence of two neutron stars, with the system having a larger total mass than any currently known BNS system. Furthermore, the detection of GW190412 revealed the first BBH merger with a clearly unequal mass ratio of q = m2/m1 = 0.28 along with significant higher-multipole gravitational radiation [5].
Description
Keywords

Reference:

Collections