Frequent toggling between alternative amino acids is driven by selection in HIV-1
Journal Article
2008
Permanent link to this Item
Authors
Journal Title
PLoS One
Link to Journal
Journal ISSN
Volume Title
Publisher
Public Library of Science
Publisher
University of Cape Town
Faculty
Series
Abstract
Author Summary Viruses, such as HIV, are able to evade host immune responses through escape mutations, yet sometimes they do so at a cost. This cost is the reduction in the ability of the virus to replicate, and thus selective pressure exists for a virus to revert to its original state in the absence of the host immune response that caused the initial escape mutation. This pattern of escape and reversion typically occurs when viruses are transmitted between individuals with different immune responses. We develop a phylogenetic model of immune escape and reversion and provide evidence that it outperforms existing models for the detection of selective pressure associated with host immune responses. Finally, we demonstrate that amino acid toggling is a pervasive process in HIV-1 evolution, such that many of the positions in the virus that evolve rapidly, under the influence of positive Darwinian selection, nonetheless display quite low sequence diversity. This highlights the limitations of HIV-1 evolution, and sites such as these are potentially good targets for HIV-1 vaccines.
Description
Keywords
Reference:
Delport, W., Scheffler, K., & Seoighe, C. (2008). Frequent toggling between alternative amino acids is driven by selection in HIV-1. PLoS pathogens, 4(12), e1000242. doi:10.1371/journal.ppat.1000242