Investigating repair mortars containing superabsorbent polymers as a method of internal curing to improve concrete patch repair performance

Master Thesis

2012

Permanent link to this Item
Authors
Journal Title
Link to Journal
Journal ISSN
Volume Title
Publisher
Publisher

University of Cape Town

License
Series
Abstract
Concrete structures are designed with a specific service life in mind and deteriorate over time due to their exposure to environmental conditions. In order to increase the service life of concrete structures, they can sometimes be rehabilitated and repaired using concrete overlays. However, problems may develop between the new and old concrete due to differential shrinkage between the concrete substrate and overlay. These differential shrinkages typically result in the build - up of tensile stresses within the overlay. If the concrete does not possess sufficient tensile strength, the overlay will crack and or delaminate, which is usually considered failure. To prevent cracking, the quantity of shrinkage that occurs in the overlay needs to be minimised. Literature suggests that the addition of superabsorbent polymers (SAP's) to the concrete overlay can reduce the total shrinkage that occurs. A large amount of research exists pertaining to the use on SAP's in high performance concrete (HPC), while very little research has been done regarding their influence of overlays. This research investigated how the addition of SAP's to overlays containing silica fume (SF) would improve bonded concrete overlay performance. Testing was conducted on overlay samples with a water:binder (W/b) ratio of 0.45 and 0.55 with SAP contents of containing 0%, 0.2%, 0.4% and 0.6% of the total binder content. Samples were subjected to a large number of tests including compressive, tensile and shear bond strength, durability, tensile relaxation, elastic modulus, carbonation, bulk diffusion and free and restrained shrinkage. The results of this research indicate d that the SAP's had a greater influence on samples with a higher w/b ratio. The results also suggested that an increase in SAP content resulted in improved tensile strength, tensile relaxation and durability while also reducing the rate of drying shrinkage at early ages . This indicated that SAP's can be used in mix design to improve bonded concrete overlay performance.
Description

Includes bibliographical references.

Reference:

Collections