Design of control systems based on Q(Youla)-parmetrization

Master Thesis

1992

Permanent link to this Item
Authors
Supervisors
Journal Title
Link to Journal
Journal ISSN
Volume Title
Publisher
Publisher

University of Cape Town

License
Series
Abstract
This thesis is concerned with the application of a method for control system design based on Youla(Q)-Parametrization. The fundamental concepts of the parametrization method have been used by Newton et al, Franklin and Raggazzini [Maciejewski, 1989] as early as 1957. The importance of its implications were not noticed during those years, but Youla and Kucera renewed it in the seventies [Maciejewski, 1989]. For the special case of an open loop stable plant, the implementation can be realized in the Internal Model Control(IMC)-Structure [Morari, 1987]. The IMC-Structure is essentially a open loop design method for closed loop controllers, thereby simplifying the design procedure. A Multivariable controller design method is proposed that unifies the advantages offered by three design approaches/techniques, namely, The Q-Parametrization, The IMC-Structure and The Characteristic Loci Technique. The proposed method is based on controller parametrization. In addition, it retains the engineering insight and simplicity of the IMC-Structure. This is particularly useful in solving complex multivariable problems. The design method was evaluated by its application to the design of a control law for a FLOTATION PROCESS SIMULATOR RIG(FLOTRIG) built by Mr Fisher[Fisher, 1988]. The design of the Multivariable controller was based on a Transfer Function Matrix, G(s), which is a Linear Time Invariant(LTI) model of the FLOTRIG.
Description

Bibliography: leaves 136-145.

Reference:

Collections