Market state discovery
Master Thesis
2022
Permanent link to this Item
Authors
Supervisors
Journal Title
Link to Journal
Journal ISSN
Volume Title
Publisher
Publisher
Department
Faculty
License
Series
Abstract
We explore the concept of financial market state discovery by assessing the robustness of two unsupervised machine learning algorithms: Inverse Covariance Clustering (ICC) and Agglomerative Super Paramagnetic Clustering (ASPC). The assessment is carried out by: simulating market datasets varying in complexity; implementing ICC and ASPC to estimate the underlying states (using only simulated log-returns as inputs); and measuring the algorithms' ability to recover the underlying states, using the Adjusted Rand Index (ARI) as a performance metric. Experiments revealed that ASPC is a more robust and better performing algorithm than ICC. ICC is able to produce competitive results in 2-state markets; however, ICC's primary disadvantage is its inability to maintain strong performance in 3, 4 and 5-state markets. For example, ASPC produced ARI numbers that were up to 800% superior to ICC in 5-state markets. Furthermore, ASPC does not rely on the art of selecting good hyper-parameters such as, the number of states a priori. ICC's utility as a market state discovery algorithm is limited.
Description
Keywords
Reference:
Singo, U. 2022. Market state discovery. . ,Faculty of Science ,Department of Statistical Sciences. http://hdl.handle.net/11427/37818