## An algorithmic approach to continuous location

Master Thesis

1995

##### Permanent link to this Item

##### Authors

##### Supervisors

##### Journal Title

##### Link to Journal

##### Journal ISSN

##### Volume Title

##### Publisher

##### Publisher

University of Cape Town

##### Faculty

##### License

##### Series

##### Abstract

We survey the p-median problem and the p-centre problem. Then we investigate two new techniques for continuous optimal partitioning of a tree T with n - 1 edges, where a nonnegative rational valued weight is associated with each edge. The continuous Max-Min tree partition problem (the continuous Min-Max tree partition problem) is to cut the edges in p - 1 places, so as to maximize (respectively minimize) the weight of the lightest (respectively heaviest) resulting subtree. Thus the tree is partitioned into approximately equal components. For each optimization problem, an inefficient implementation of the algorithm is given, which runs in pseudo-polynomial time, using a previously developed algorithm and a construction. We then derive from it a much faster algorithm using a top-down greedy technique, which runs in polynomial time. The algorithms have a variety of applications among others to highway and pipeline maintenance.

##### Description

Bibliography: pages 126-130.

##### Keywords

#### Reference:

Chiang, Y. 1995. An algorithmic approach to continuous location. University of Cape Town.