Use of water-soluble phosphine ligands in heterogeneous hydroformylation catalysis : application to long-chain 1-alkenes
Master Thesis
1994
Permanent link to this Item
Authors
Supervisors
Journal Title
Link to Journal
Journal ISSN
Volume Title
Publisher
Publisher
University of Cape Town
Department
Faculty
License
Series
Abstract
The two-phase rhodium-tri(m-sulfonatophenyl)phosphine (Rh-TPPTS) system for the hydroformylation of 1-octene, 1-decene, and 1-dodecene to the corresponding aldehydes, has been investigated. Due to the two distinct phases - the catalytic species in the aqueous phase and the products and reactants in the organic phase - the separation of the catalyst was easily facilitated. A comparison was made of the activity, selectivity towards linear aldehydes, and catalyst lifetime of two systems where i) the active catalytic species were generated in situ from rhodium trichloride (RhCl₃.3H₂O) and excess phosphine ligand (TPPTS) under mild hydroformylation conditions (5 MPa H₂/CO (1:1); 100 °C); and ii) where the rhodium(I) complex, RhH(CO)(TPPTS)₃ is used as the catalyst precursor. The former system was found to be superior in activity and selectivity to that of the latter, achieving fairly high conversions of ca. 60% for the hydroformylation of 1-octene, with n:iso ratios of up to 16:1 for a catalyst composition a Rh:P ratio of 1:30. Unfortunately low conversions of ca. 10% for the hydroformylation of 1-decene and ca. 4% for that of 1-dodecene resulted under the same conditions. While the reasons for the drastic decrease in conversion for C₁₀ and C₁₂ alkenes is not completely clear, this poor conversion is attributed to the extremely low solubility of the long-chain 1-alkenes in the aqueous phase. Under certain optimum conditions (Rh:P ≥ l :20), virtually no leeching of rhodium into the organic phase was detected. A ³¹P NMR spectroscopic study was undertaken in an attempt to ascertain the nature and distribution of rhodium tertiary-phosphine complexes in the aqueous phase before and after the mixture was subjected to standard hydroformylation conditions.
Description
Keywords
Reference:
Du Toit, J. 1994. Use of water-soluble phosphine ligands in heterogeneous hydroformylation catalysis : application to long-chain 1-alkenes. University of Cape Town.