Complex fluid dynamical computations via the Finite Volume Method

Master Thesis

2018

Permanent link to this Item
Authors
Supervisors
Journal Title
Link to Journal
Journal ISSN
Volume Title
Publisher
Publisher

University of Cape Town

License
Series
Abstract
Numerical simulations of the complex flows of viscoelastic fluids are investigated. The viscoelastic fluids are modelled, primarily, via the Johnson-Segalman constitutive model. Our Numerical approach is based on finite volume method, based on the Johnson-Segalman constitutive model and implemented on the OpenFOAMĀ® platform. The Johnson-Segalman model also easily reduces to the Oldroyd-B model under certain conditions of the material parameters. Since computations using the Oldroyd-B model have been extensively documented in the literature, we take advantage of the mathematical modelling connection between the Johnson-Segalman and Oldroyd-B models to validate the accuracy of our Johnson-Segalman solver via reduction to the Oldroyd-B model. Numerical validation of our results is conducted via the most commonly used benchmark problems. The final aim of our work is to assess the viability and efficiency of our numerical solver via an investigation into the complex fluid dynamical processes associated with shear banding.
Description

Reference:

Collections