Three-Dimensional Body Volume Measurement From Two-Dimensional Images: Towards A Smartphone Application

Master Thesis

2020

Permanent link to this Item
Authors
Journal Title
Link to Journal
Journal ISSN
Volume Title
Publisher
Publisher
License
Series
Abstract
Obesity poses a public health threat worldwide and is associated with a higher mortality, increased likelihood of diabetes, and an increased risk of cancer. When treating obesity, regular monitoring of metrics such as body mass index (BMI) and waist circumference has been found to result in improved health outcomes for patients. Three-dimensional (3D) scanners provide a useful tool to provide body measurements based on 3D images in obesity management. However, such scanners are often inaccessible due to cost. A smartphone image-based method able to produce 3D images may provide a more accessible measuring tool. As a step towards developing such a smartphone application, this project developed a method for 3D reconstruction of body images from two-dimensional (2D) images, using a full body 3D Gaussian process morphable model (GPMM). Separate GPMMs were trained to learn the shape of female and male human bodies. Gaussian process regression of the three-dimensional (3D) GPMM models onto two-dimensional (2D) images is performed. Corresponding landmarks on the 3D shapes and in the 2D images are employed in reconstruction. Measurements of body volume, waist circumference and height are then performed to extract information that is useful in obesity management. Different model configurations (shape model with arms; modified shape model with arms; shape model without arms; marginalised shape model without arms; shape model with different landmarks) were used to ascertain the most promising approach for the reconstruction. Each reconstructed body was tested for accuracy using the surface-tosurface distance per vertex, modified Hausdorff distance, and assessment of the measurements. Tests were performed using data from the same dataset used to build the model and generalised data from a different dataset. In all test cases, the best performing approach used shape models without arms when considering surface distances. However, the surface-to-surface distances errors were larger than those seen in literature. For body measurements, the best performing models varied with different models performing best for different measurements. For the measurements, the errors were larger than the allowable errors and larger than those found in literature. Landmark positions were evaluated separately and found to be imprecise. There are a few sources that contribute towards the reconstruction errors. Possible sources of error include an inability to interpret pose and landmark position errors. The major recommendations for future work are to use a model that incorporates both shape and pose and to use automatic landmarking methods. Regarding a pathway to a smartphone app, camera parameter information should be considered to improve processing of the images and smartphone orientation information should be considered to correct for distortions due to a tilted phone.
Description

Reference:

Collections