Analytical Solution of the Characteristic Function in the Trolle-Schwartz Model
Master Thesis
2019
Permanent link to this Item
Authors
Journal Title
Link to Journal
Journal ISSN
Volume Title
Publisher
Publisher
Faculty
License
Series
Abstract
In 2009, Trolle and Schwartz (2008) produced an instantaneous forward interest rate model with several stylised facts such as stochastic volatility. They derived pricing formulae in order to price bonds and bond options, which can be altered to price interest rate options such as caplets, caps and swaptions. These formulae involve implementing numerical methods for solving an ordinary differential equation (ODE). Schumann (2016) confirmed the accuracy of the pricing formulae in the Trolle and Schwartz (2008) model using Monte-Carlo simulation. Both authors used a numerical ODE solver to estimate the ODE. In this dissertation, a closed-form solution for this ODE is presented. Two solutions were found. However, these solutions rely on a simplification of the instantaneous volatility function originally proposed in the Trolle and Schwartz (2008) model. This case happens to be the stochastic volatility version of the Hull and White (1990) model. The two solutions are compared to an ODE solver for one stochastic volatility term and then extended to three stochastic volatility terms.
Description
Keywords
Reference:
Van Gysen, R. 2019. Analytical Solution of the Characteristic Function in the Trolle-Schwartz Model.