Comparative study of tool-flows for rapid prototyping of software-defined radio digital signal processing

Master Thesis


Permanent link to this Item
Journal Title
Link to Journal
Journal ISSN
Volume Title
This dissertation is a comparative study of tool-flows for rapid prototyping of SDR DSP operations on programmable hardware platforms. The study is divided into two parts, focusing on high-level tool-flows for implementing SDR DSP operations on FPGA and GPU platforms respectively. In this dissertation, the term ‘tool-flow’ refers to a tool or a chain of tools that facilitate the mapping of an application description specified in a programming language into one or more programmable hardware platforms. High-level tool-flows use different techniques, such as high-level synthesis to allow the designer to specify the application from a high level of abstraction and achieve improved productivity without significant degradation in the design’s performance. SDR is an emerging communications technology that is driven by - among other factors – increasing demands for high-speed, interoperable and versatile communications systems. The key idea in SDR is the need to implement as many as possible of the radio functions that were traditionally defined in fixed hardware, in software on programmable hardware processors instead. The most commonly used processors are based on complex parallel computing architectures in order to support the high-speed processing demands of SDR applications, and they include FPGAs, GPUs and multicore general-purpose processors (GPPs) and DSPs. The architectural complexity of these processors results in a corresponding increase in programming methodologies which however impedes their wider adoption in suitable applications domains, including SDR DSP. In an effort to address this, a plethora of different high-level tool-flows have been developed. Several comparative studies of these tool-flows have been done to help – among other benefits – designers in choosing high-level tools to use. However, there are few studies that focus on SDR DSP operations, and most existing comparative studies are not based on well-defined comparison criteria. The approach implemented in this dissertation is to use a system engineering design process, firstly, to define the qualitative comparison criteria in the form of a specification for an ideal high-level SDR DSP tool-flow and, secondly, to implement a FIR filter case study in each of the tool-flows to enable a quantitative comparison in terms of programming effort and performance. The study considers Migen- and MyHDL-based open-source tool-flows for FPGA targets, and CUDA and Open Computing Language (OpenCL) for GPU targets. The ideal high-level SDR DSP tool-flow specification was defined and used to conduct a comparative study of the tools across three main design categories, which included high-level modelling, verification and implementation. For tool-flows targeting GPU platforms, the FIR case study was implemented using each of the tools; it was compiled, executed on a GPU server consisting of 2 GTX Titan-X GPUs and an Intel Core i7 GPP, and lastly profiled. The tools were moreover compared in terms of programming effort, memory transfers cost and overall operation time. With regard to tool-flows with FPGA targets, the FIR case study was developed by using each tool, and then implemented on a Xilinx 7 FPGA and compared in terms of programming effort, logic utilization and timing performance.