A seeded ambient temperature ferrit process for the treatment of AMD waters: Magnetite formation in the presence and absence of calcium ions under steady state operation
dc.contributor.author | Morgan, B E | |
dc.contributor.author | Lahav, O | |
dc.contributor.author | Hearne, G | |
dc.contributor.author | Loewenthal, R E | |
dc.date.accessioned | 2017-11-01T07:58:57Z | |
dc.date.available | 2017-11-01T07:58:57Z | |
dc.date.issued | 2003 | |
dc.date.updated | 2017-10-31T08:49:17Z | |
dc.description.abstract | An ambient temperature ferrite process has been developed for the removal of iron and non-ferrous metals from AMD waters. The process involves the controlled formation of magnetite (Fe3 O4 ) that has the capacity to substitute divalent and trivalent cations as part of the lattice, thus forming a stable easy-to-separate ferrite. This paper reports on continuous operations of the process in the absence and presence of Ca2+, which is well known to impede ferrite formation. In the first instance, the process involves the precipitation of hydroxy-metals at pH 10.5 and their subsequent adsorption onto magnetite seed in a contact stabilisation reactor. Second, liquid-solid separation is effected and the solid fraction is subsequently treated in an oxidising reactor in which a fraction of the ferrous species is oxidised to an intermediate ferric precipitate. Finally, both ferrous and ferric species undergo crystalchemical processing and are incorporated into stable magnetite. Results indicate that Ca2+ interference can be overcome by maintaining a high ratio of precipitated ferrous species to dissolved Ca2+. It was found that in order to attain the required high Fe2+:Ca2+ ratio, the solid ferrous-hydroxy species concentration in the oxidation reactor should be maintained at above 1 200 mg Fe/l. Ferrous to calcium ratios greater than 3 were found to favour magnetite formation. In the absence of Ca2+, a solid ferroushydroxy species concentration of approximately 500 mg/l was sufficient for magnetite formation. Operating the process at ferroushydroxy concentrations of lower than 1 200 and 500 mg/l in the presence and absence of calcium respectively enhanced the formation of other iron oxides, primarily goethite. In all experiments the iron concentration in the effluent was less than 1 mg/l, the sludge volume index (SVI) extremely low (< 4 ml/g) and the percentage of ferrous-hydroxy species in the sludge can be reduced to about 1%. These features, together with the potential to incorporate heavy metals into a stable compound, make the process very promising for AMD treatment. | |
dc.identifier.apacitation | Morgan, B. E., Lahav, O., Hearne, G., & Loewenthal, R. E. (2003). A seeded ambient temperature ferrit process for the treatment of AMD waters: Magnetite formation in the presence and absence of calcium ions under steady state operation. <i>Water SA</i>, http://hdl.handle.net/11427/25978 | en_ZA |
dc.identifier.chicagocitation | Morgan, B E, O Lahav, G Hearne, and R E Loewenthal "A seeded ambient temperature ferrit process for the treatment of AMD waters: Magnetite formation in the presence and absence of calcium ions under steady state operation." <i>Water SA</i> (2003) http://hdl.handle.net/11427/25978 | en_ZA |
dc.identifier.citation | Morgan, B.E.; Lahav, O.; Hearne, G.; Loewenthal, R.E.. (2003). A seeded ambient temperature ferrit process for the treatment of AMD waters: Magnetite formation in the presence and absence of calcium ions under steady state operation, 29(2): 117-124 | |
dc.identifier.ris | TY - Journal Article AU - Morgan, B E AU - Lahav, O AU - Hearne, G AU - Loewenthal, R E AB - An ambient temperature ferrite process has been developed for the removal of iron and non-ferrous metals from AMD waters. The process involves the controlled formation of magnetite (Fe3 O4 ) that has the capacity to substitute divalent and trivalent cations as part of the lattice, thus forming a stable easy-to-separate ferrite. This paper reports on continuous operations of the process in the absence and presence of Ca2+, which is well known to impede ferrite formation. In the first instance, the process involves the precipitation of hydroxy-metals at pH 10.5 and their subsequent adsorption onto magnetite seed in a contact stabilisation reactor. Second, liquid-solid separation is effected and the solid fraction is subsequently treated in an oxidising reactor in which a fraction of the ferrous species is oxidised to an intermediate ferric precipitate. Finally, both ferrous and ferric species undergo crystalchemical processing and are incorporated into stable magnetite. Results indicate that Ca2+ interference can be overcome by maintaining a high ratio of precipitated ferrous species to dissolved Ca2+. It was found that in order to attain the required high Fe2+:Ca2+ ratio, the solid ferrous-hydroxy species concentration in the oxidation reactor should be maintained at above 1 200 mg Fe/l. Ferrous to calcium ratios greater than 3 were found to favour magnetite formation. In the absence of Ca2+, a solid ferroushydroxy species concentration of approximately 500 mg/l was sufficient for magnetite formation. Operating the process at ferroushydroxy concentrations of lower than 1 200 and 500 mg/l in the presence and absence of calcium respectively enhanced the formation of other iron oxides, primarily goethite. In all experiments the iron concentration in the effluent was less than 1 mg/l, the sludge volume index (SVI) extremely low (< 4 ml/g) and the percentage of ferrous-hydroxy species in the sludge can be reduced to about 1%. These features, together with the potential to incorporate heavy metals into a stable compound, make the process very promising for AMD treatment. DA - 2003 DB - OpenUCT DP - University of Cape Town J1 - Water SA LK - https://open.uct.ac.za PB - University of Cape Town PY - 2003 T1 - A seeded ambient temperature ferrit process for the treatment of AMD waters: Magnetite formation in the presence and absence of calcium ions under steady state operation TI - A seeded ambient temperature ferrit process for the treatment of AMD waters: Magnetite formation in the presence and absence of calcium ions under steady state operation UR - http://hdl.handle.net/11427/25978 ER - | en_ZA |
dc.identifier.uri | http://hdl.handle.net/11427/25978 | |
dc.identifier.vancouvercitation | Morgan BE, Lahav O, Hearne G, Loewenthal RE. A seeded ambient temperature ferrit process for the treatment of AMD waters: Magnetite formation in the presence and absence of calcium ions under steady state operation. Water SA. 2003; http://hdl.handle.net/11427/25978. | en_ZA |
dc.language.iso | eng | |
dc.publisher.department | Department of Civil Engineering | en_ZA |
dc.publisher.faculty | Faculty of Engineering and the Built Environment | |
dc.publisher.institution | University of Cape Town | |
dc.source | Water SA | |
dc.source.uri | http://www.wrc.org.za/Pages/default.aspx | |
dc.title | A seeded ambient temperature ferrit process for the treatment of AMD waters: Magnetite formation in the presence and absence of calcium ions under steady state operation | |
dc.type | Journal Article | |
uct.type.filetype | Text | |
uct.type.filetype | Image |