Cooperative Behaviours with Swarm Intelligence in Multirobot Systems for Safety Inspections in Underground Terrains

Journal Article

2014

Permanent link to this Item
Authors
Journal Title

Mathematical Problems in Engineering

Journal ISSN
Volume Title
Publisher
Publisher
License
Series
Abstract
Underground mining operations are carried out in hazardous environments. To prevent disasters from occurring, as often as they do in underground mines, and to prevent safety routine checkers from disasters during safety inspection checks, multirobots are suggested to do the job of safety inspection rather than human beings and single robots. Multirobots are preferred because the inspection task will be done in the minimum amount of time. This paper proposes a cooperative behaviour for a multirobot system (MRS) to achieve a preentry safety inspection in underground terrains. A hybrid QLACS swarm intelligent model based on Q-Learning (QL) and the Ant Colony System (ACS) was proposed to achieve this cooperative behaviour in MRS. The intelligent model was developed by harnessing the strengths of both QL and ACS algorithms. The ACS optimizes the routes used for each robot while the QL algorithm enhances the cooperation between the autonomous robots. A description of a communicating variation within the QLACS model for cooperative behavioural purposes is presented. The performance of the algorithms in terms of without communication, with communication, computation time, path costs, and the number of robots used was evaluated by using a simulation approach. Simulation results show achieved cooperative behaviour between robots.
Description

Reference:

Collections